Tìm GTNN và GTNN của hàm số
y=cănx+3 - căn5-x
Giúp mình với
Cho x>1/4 Tìm GTNN của biểu thức :
A= [2x- ( cănx)+8]/[2×(cănx)-1]
Các bạn giúp mình với mình đang cần gấp ♡♡♡♡
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)
Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :
\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)
\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)
Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha )
Phạm Thị Thùy Linh đây nhé
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra khi \(x=\frac{25}{4}\)
Cho hàm số y=f(x)=-0,5x^2. Dùng tính chất biến thiên của hàm số để so sánh f(3 căn5 + căn 2) và f(2 căn11 +1) làm ơn giúp mình
Tìm GTLN, GTNN của hàm số y = 4cos²x + 2sinx +2 , giúp em với em cảm ơn !
\(y=4\left(1-sin^2x\right)+2sinx+2=-4sin^2x+2sinx+6\)
Đặt \(sinx=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-4t^2+2t+6\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-1;1\right]\)
\(f\left(-1\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=\dfrac{25}{4}\); \(f\left(1\right)=4\)
\(\Rightarrow y_{max}=\dfrac{25}{4}\) khi \(sinx=\dfrac{1}{4}\)
\(y_{min}=0\) khi \(sinx=-1\)
Ta có: \(y=4cos^2x+2sinx+2=4-4sin^2x+2sinx+2=-4sin^2x+2sinx+6=-\left(4sin^2x-2sinx+\dfrac{1}{16}-\dfrac{1}{16}-6\right)=-\left(2sin^2x-\dfrac{1}{4}\right)^2+\dfrac{97}{16}\)
Ta có: \(-\left(2sin^2x-\dfrac{1}{4}\right)^2\le0\Rightarrow y\le\dfrac{97}{16}\)
Vậy \(y_{max}=\dfrac{97}{16}\)
Tìm GTNN: x+ (2căn x) +3/(cănx) + 9 (x>0)
Tìm GTLN và GTNN của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 3 (*)
A. m a x y = 4 7 , m i n y = - 4 7
B. m a x y = 2 7 7 , m i n y = - 2 7 7
C. m a x y = 7 2 , m i n y = - 2 7
D. m a x y = 2 7 7 , m i n y = - 2 7 7
Tìm GTNN của hàm số : \(y=x^2+\frac{2}{x^3}\)với x > 0
Tách ghép Cauchy hộ mình nhé :(
Tính đạo hàm: \(\left(x^2\right)'=2x\)
\(\left(\frac{2}{x^3}\right)'=2\left(\frac{1}{x^3}\right)'=2\left(x^{-3}\right)'=2.\left(-3\right).x^{-4}=\frac{-6}{x^4}\)
\(y'=\left(x^2+\frac{2}{x^3}\right)'=\left(x^2\right)'+\left(\frac{2}{x^3}\right)'=2x-\frac{6}{x^4}=\frac{2x^5-6}{x^4}\)
\(y'=0\Leftrightarrow x=\sqrt[5]{3}\)
Lập bảng biến thiên ta có: \(Min\)\(y=y\left(\sqrt[5]{3}\right)\approx2,58640929\)
giả sử x,y>0 x,y thuộc R thỏa (cănx+1).(căny+1)>=4
tìm GTNN của P=x^2/y + y^2/x
Tìm GTNN (min y) của hàm số y = log 3 x 2 + x + 1 - log 3 x với x > 0.
A. 0
B. 1
C. 1 2
D. 1 3
cho hàm số y=f(x)=0,5 y voi 2<x<6. vẽ đồ thị của hàm số đó rồi dùng đồ thị tìm GTNN,GTLN. GIẢI HELP MÌNH,MÌNH ĐANG GẤP LẤM