Tính giá trị biểu thức
\(T=(2\sqrt{3}+1)(3\sqrt{2}-1)\sqrt{13-4\sqrt{3}}.\sqrt{19+6\sqrt{2}}\)
Tính giá trị biểu thức \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2013}+\sqrt{2014}}\) .
(Làm tròn đến chữ số thập phân thứ 6)
Tính giá trị biểu thức \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2013}+\sqrt{2014}}\) .
(Làm tròn đến chữ số thập phân thứ 6)
Tính giá trị biểu thức \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2013}+\sqrt{2014}}\) .
(Làm tròn đến chữ số thập phân thứ 6)
Tính giá trị biểu thức : \(A=\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}\) \(-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) \(-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0,x\ne4,x\ne9\right)\)
a\()\) Rút gọn biểu thức trên
b\()\) Tìm giá trị nguyên của x để M nhận giá trị nguyên
`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`
`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`
`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(3x-sqrtx-20)/
Chứng minh với mọi giá trị của x để biểu thức có nghĩa thì giá trị của:
A=(\(\dfrac{\sqrt[]{x}+1}{2\sqrt[]{x}-2}\)+ \(\dfrac{3}{x-1}\)- \(\dfrac{\sqrt[]{x}+3}{2\sqrt[]{x}+2}\)). \(\dfrac{4x-4}{5}\)
Không phụ thuộc vào x
Cho x=\(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\). Tính giá trị của biểu thức M=\(x^2+\sqrt{x^4+x+1}\)
\(x=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\)
\(\Leftrightarrow x+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{2}}{8}\right)^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}-\frac{\sqrt{2}}{4}=0\)
\(\Leftrightarrow4x^2+x\sqrt{2}-\sqrt{2}=0\)(1)
\(\Leftrightarrow x\sqrt{2}=\sqrt{2}-4x^2\)
\(\Leftrightarrow x=1-2x^2\sqrt{2}\)
Thay vào M ta sẽ được
\(M=x^2+\sqrt{x^4+1-2x^2\sqrt{2}+1}\)
\(=x^2+\sqrt{\left(x^2-\sqrt{2}\right)^2}\)
\(=x^2+\left|x^2-\sqrt{2}\right|\)
Từ \(\left(1\right)\Rightarrow\sqrt{2}-x\sqrt{2}=4x^2\ge0\)
\(\Leftrightarrow\sqrt{2}\left(1-x\right)\ge0\)
\(\Leftrightarrow x\le1\)
\(\Leftrightarrow x^2\le1< \sqrt{2}\)
\(\Rightarrow\left|x^2-\sqrt{2}\right|=\sqrt{2}-x^2\)
Khi đó \(M=x^2+\left|x^2-\sqrt{2}\right|=x^2-\sqrt{2}+x^2=\sqrt{2}\)
|N|
Cho P= \(\left(1-\frac{\sqrt{3}}{x-9}+\frac{3}{\sqrt{x}-3}\right):\frac{\sqrt{x}}{\sqrt{x}+3}\)
a, Rút gọn biểu thức P
b, Tính giá trị P khi x=\(11+6\sqrt{2}\)
c, Tìm x để P nguyên
\(A=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a Rút gọn biểu thức
b Tính giá trị của \(\sqrt{A}\) khi x=\(4+2\sqrt{3}\)