Tìm x, y ∈ N : 10x - 1 = 81y
Tìm x,y thuộc N để: ( 100x + 3y + 1 ).( 2^x + 10x+ y ) = 225
Giúp mình nha
Vì (100x+3y+1).(2^x+10x+y)=225(*) nên (100x+3y+1) và (2^x+10x+y) là 2 số lẻ
Nếu x khác 0:thi 2^x+10x là 2 số chẵn để 2^x+10x+y là số lẻ thì yla so le
suy ra 3y là số lẻ thì 3y+1 là số chẵn suy ra 100x+3y+1 là số chẵn ( trái với đề bài)
khi và chỉ khi x=0 thay vào (*) ta duoc
(3y+1).(1+y)=225
vì x,y là số tự nhiên nên 3y+1 và 1+y là số tự nhiên
ma 225=5 . 45 =15.15=3.75 =9.25
lại có 3y+1 không chia hết cho 3 ,3y+1 lớn hơn 1+y
\(\Rightarrow\)\(\hept{\begin{cases}3y+1=25\\1+y=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3y=24\\y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}y=8\\y=8\end{cases}}\)
vậy x=0,y=8
1) Làm phép chia:
a) (x^4 + 2x^2y^2 + y^4) : ( x^2+y^2)
b) ( 49x^2 + 81y^2) : (7x + 9x)
Tìm x,y € N
2xy - 10x + y = 13
\(2xy-10x+y=13\)
\(2x\left(y-5\right)+y-5=13-5=8\)
\(\Rightarrow\left(2x+1\right)\left(y-5\right)=8\)
Vì x ; y thuộc N => Ta có bảng sau :
2x + 1 | 1 | 8 | 2 | 4 |
y - 5 | 8 | 1 | 4 | 2 |
x | 0 | 7/2 | 1/2 | 3/2 |
y | 13 | 6 | 9 | 7 |
Vì x ; y thuộc N => x = 0 ; y = 13
2xy - 10x + y = 13
2x ( y - 5 ) + y = 8 + 5
2x ( y - 5 ) + ( y - 5 ) = 8
( y - 5 ) ( 2x + 1 ) = 8
=> ( y - 5 ) ; ( 2x + 1 ) \(\in\)Ư ( 8 ) = { 1 ; - 1 ; 2 ; - 2 ; 4 ; - 4 ; 8 ; - 8 }
Vì x , y \(\in\)N => y - 5 ; 2x + 1 \(\in\) N => lập bảng giá trị
y - 5 | 1 | 2 | 4 | 8 |
y | 6 | 7 | 9 | 13 |
2x + 1 | 8 | 4 | 2 | 1 |
x | 7/2 | 3/2 | 1/2 | 0 |
Vì x ; y thuộc N = > x= 0 ; y = 13
tìm x y thuộc n sao cho x2+10x+16=3y
Phân tích đa thức thành nhân tử
a) x^4-1
b) 81y^2-( y^2+6y^2)
c) (x-a)^4-(x+a)^4
d) a^4 - b^2(2a-b)^2
Giúp mik vs mik cần gấp
a: \(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
c: \(=\left(x-a-x-a\right)\left(x-a+x+a\right)\left(x^2+2ax+a^2+x^2-2ax+a^2\right)\)
\(=-2a\cdot2x\cdot\left(2x^2+2a^2\right)\)
\(=-8ax\left(x^2+a^2\right)\)
d: \(=a^4-\left(2ab-b^2\right)^2\)
\(=\left(a^2-2ab+b^2\right)\left(a^2+2ab-b^2\right)\)
\(=\left(a-b\right)^2\left(a^2+2ab-b^2\right)\)
Tìm x;y thuộc N; biết rằng 10x + 288 = y2.
Lời giải:
Ta thấy:
$10x\equiv 0\pmod 5$
$288\equiv 3\pmod 5$
$\Rightarrow y^2\equiv 3\pmod 5$ (vô lý)
Do ta biết rằng một số chính phương khi chia cho $5$ chỉ có thể có dư là $0,1,4$.
Như vậy, không tồn tại số tự nhiên $x,y$ thỏa mãn điều kiện đề bài.
Tìm x;y thuộc N; biết rằng 10x + 288 = y2.
Bài 1: Rút gọn biểu thức
\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
Bài 2; Tính giá trị của các biểu thức
a) \(A=x^3-30x^2-31x+1\)tại x = 31
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)tại x = 14
c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)tại x = 9
VÀO TCN
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
vÀO TCN CỦA MK
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
Bài 1.khai triển HĐT
a,(3x-4)^2 b,(1+4x)^2 c,(2x+3)^3
d,(5-2x)^3 e,49x^2-25 f,1/25-81y^2
Bài 2.Tìm x biết:Viết đầy đủ
a,(x-5)^2-(x+7)(x-7)=8 b,(2x+5)^2-4(x+1)(x-1)=10
Bài 3.Tìm GTLN,GTNN của các biểu thức sau
a,A=x^2-6x+19 b,B=-x^2+8x-20
c,C=4x^2+12x+100 d,D=25+4x-x^2
Bài 1.
\(a, (3x-4)^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)
\(=9x^2-24x+16\)
\(b,\left(1+4x\right)^2\)
\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)
\(=16x^2+8x+1\)
\(c,\left(2x+3\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
\(d,\left(5-2x\right)^3\)
\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)
\(=125-150x+60x^2-8x^3\)
\(e,49x^2-25\)
\(=\left(7x\right)^2-5^2\)
\(=\left(7x-5\right)\left(7x+5\right)\)
\(f,\dfrac{1}{25}-81y^2\)
\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)
\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)
Bài 2.
\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)
\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)
\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)
\(\Rightarrow x^2-10x+25-x^2+49=8\)
\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)
\(\Rightarrow-10x=-66\)
\(\Rightarrow x=\dfrac{33}{5}\)
\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)
\(\Rightarrow4x^2+20x+25-4x^2+4=10\)
\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)
\(\Rightarrow20x=-19\)
\(\Rightarrow x=\dfrac{-19}{20}\)
#\(Toru\)
Bài 1
a) (3x - 4)²
= (3x)² - 2.3x.4 + 4²
= 9x² - 24x + 16
b) (1 + 4x)²
= 1² + 2.1.4x + (4x)²
= 1 + 8x + 16x²
c) (2x + 3)³
= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³
= 8x³ + 36x² + 54x + 27
d) (5 - 2x)³
= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³
= 125 - 150x + 60x² - 8x³
e) 49x² - 25
= (7x)² - 5²
= (7x - 5)(7x + 5)
f) 1/25 - 81y²
= (1/5)² - (9y)²
= (1/5 - 9y)(1/5 + 9y)
Bài 3.
\(a,A=x^2-6x+19\)
\(=x^2-6x+9+10\)
\(=\left(x^2-2\cdot x\cdot3+3^2\right)+10\)
\(=\left(x-3\right)^2+10\)
Ta thấy: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+10\ge10\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: \(Min_A=10\) khi \(x=3\)
\(b,B=-x^2+8x-20\)
\(=-x^2+8x-16-4\)
\(=-\left(x^2-8x+16\right)-4\)
\(=-\left(x^2-2\cdot x\cdot4+4^2\right)-4\)
\(=-\left(x-4\right)^2-4\)
Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-4\right)^2-4\le-4\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy \(Max_B=-4\) khi \(x=4\)
\(c,C=4x^2+12x+100\)
\(=4x^2+12x+9+91\)
\(=\left[\left(2x\right)^2+2\cdot2x\cdot3+3^2\right]+91\)
\(=\left(2x+3\right)^2+91\)
Ta thấy: \(\left(2x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+3\right)^2+91\ge91\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy \(Min_C=91\) khi \(x=\dfrac{-3}{2}\)
\(d,D=25+4x-x^2\)
\(=-x^2+4x-4+29\)
\(=-\left(x^2-2\cdot x\cdot2+2^2\right)+29\)
\(=-\left(x-2\right)^2+29\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+29\le29\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(Max_D=29\) khi \(x=2\)
#\(Toru\)