Tìm x:
(5ax3 - 3ax2) : ax2 = 7 (a là hằng số, a ≠ 0)
Cho đa thức h ( x ) = 3 a x 2 + 5 x (a là hằng số). Tìm a biết h ( 2 ) = 2 h ( 1 )
A. a = -1
B. a = 0
C. a = 1
D. a = 2
Ta có h(2) = 12a + 10, h(1) = 3a + 5.
Vì h(2) = 2h(1)
⇒ 12a + 10 = 2(3a + 5) ⇒ 12a + 10 = 6a + 10
⇒ 6a = 0 ⇒ a = 0. Chọn B
Cho đa thức D ( x ) = a x 2 + 2 x - 2 (a là hằng số) . Tìm a biết D(2) = 6
A. a = 1.
B. a = 2
C. a = -1
D. a = 3
Vì D(a) = 6 ⇒ 4a + 4 - 2 = 6 ⇒ 4a + 2 = 6 ⇒ 4a = 4
⇒ a = 1.
Chọn A
Giới hạn của hàm số lim x → a x 2 - a x - a (với a là một hằng số và a ≥ 0) bằng
A. 0
B. a
C. 2 a
D. a
Giới hạn của hàm số lim x → a x 2 - 1 x - a (với a là một hằng số và a ≥0) bằng
A. 0.
B. a.
C. 2 a
D. a
Cho đa thức ƒ (x)=ax2+bx+c(a≠0,a+c=b),a,b,c là các hằng số) có hai nghiệm trong đó có một nghiệm là 1, hãy tìm nghiệm còn lại
\(a+c=b\Rightarrow a-b+c=0\)
Ta thấy \(f\left(-1\right)=a-b+c=0\)Vậy x = -1 là 1 nghiệm của f(x)
Với \(a\ne0\)thì f(x) là 1 đa thức bậc hai và có nhiều nhất là 2 nghiệm, 1 nghiệm = 1 theo đề bài thì nghiệm còn lại như chứng minh trên là: -1.
Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các hệ số a, b, c:
2 x 2 + m 2 = 2 m - 1 . x m là hằng số
2x2 + m2 = 2(m – 1).x
⇔ 2x2 – 2(m – 1).x + m2 = 0
Phương trình bậc hai trên có a = 2; b = -2(m – 1); c = m2.
. Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các các hệ số a, b, c. a) 2x2 – 2x = 5 + x; b) x2 + 2x = mx + m, m là hằng số; c) 2x2 + (3x – 1) = 1 + .
Giải
a) Ta có : 2.x2 -2.x = 5.x
<=> 2.x2 -3.x-5=0 : a = 2 ; b = 3 ; c = -5
b) Ta có : x2 +2.x = m. x + m
<=> x2 + ( 2-m ) .x - m = 0 : a = 1 ; b=2-m ; c=-m
c) Ta có : 2.x2 \(+\sqrt{2}.\left(3.x-1\right)=1+\sqrt{2}\)
<=> 2.x2 + 3.\(\sqrt{2}.x-2.\sqrt{2}-1=0\): a = 2 ; b= 3\(\sqrt{2};c=-2\sqrt{2}-1\)
a) \(2x^2-2x=5+x\)
\(\Leftrightarrow2x^2-x-5=0\)với \(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)
b) \(x^2+2x=mx+m\)
\(\Leftrightarrow x^2+\left(2-m\right)x-m=0\)với \(\hept{\begin{cases}z=1\\b=3-m\\c=-m\end{cases}}\)
c) \(2x^2+\sqrt{2}\left(3x-1\right)=1+\sqrt{2}\)
\(\Leftrightarrow2x^2+3\sqrt{2}\cdot x-2\sqrt{2}-1=0\)
với \(\hept{\begin{cases}a=2\\b=3\sqrt{2}\\c=-2\sqrt{2}-1\end{cases}}\)
Tính giá trị của các đa thức sau: ax2 + bx + c tại x = -1; x = 1 (a, b, c là hằng số)
* Thay giá trị x = -1 vào đa thức, ta có:
a(-1)2 + b(-1) + c = a – b + c
Vậy giá trị đa thức bằng a – b + c tại x = -1
* Thay giá trị x = 1 vào đa thức, ta có:
a.12 + b.1 + c = a + b + c
Vậy giá trị đa thức bằng a + b + c tại x = 1.
Tìm các hằng số a, b, c sao cho đa thức f(x) =ax2 + bx + c thoả mãn điều kiện
f(n+1) – f(n) = n2 với mọi n = 1, 2, …
Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...
Giả sử n=1 ta có:
\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)
Giả sử n=2 ta có:
\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)
Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)
Tìm bậc của các đa thức sau (a là hằng số )
a, 2x - 5xy + 3x2
b, ax2 + 2x2 - 3
c, ax3 + 2xy - 5
d, 4y2 - 3y - 3y4
e, -3x5 - 1/2 x3y - 3/4 xy2 + 3x5 + 2
a)bậc của da thức 2x-5xy+3x2 là:5
b)bậc của da thức ax2+2x2 là:4
c)bậc của da thức ax3+2xy là:5
d)bậc của da thức 4y2-3y4 là:6
e)bậc của da thức -3x5-\(\dfrac{1}{2}\)x3y-\(\dfrac{3}{4}\)xy2+3x5+2 là:17