Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 13:22

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

camcon
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 22:06

\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)

\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)

\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)

Do đó:

\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)

\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)

Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)

Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho

Linh Trần
Xem chi tiết
Linh Trần
12 tháng 3 2021 lúc 23:59

Ai giúp em với ạ hic :((

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 2 2017 lúc 14:46

Đáp án B

Phạm Tuấn Kiệt
Xem chi tiết
Nguễn Thanh Bình
12 tháng 10 lúc 20:30

Gọi \(s = sin ⁡ x , \textrm{ }\textrm{ } c = cos ⁡ x\). Vì \(x \in \left[\right. 0 , \pi / 4 \left]\right.\) nên \(c > 0\). Chia cả phương trình cho \(cos ⁡ x\) được (không làm mất nghiệm vì \(cos ⁡ x \neq 0\) trên đoạn này). Đặt \(t = tan ⁡ x = \frac{s}{c} \in \left[\right. 0 , 1 \left]\right.\). Sau khi biến đổi ta được:

\(\frac{1}{cos ⁡ x} \left[\right. \left(\right. 4 - 6 m \left.\right) s^{3} + 3 \left(\right. 2 m - 1 \left.\right) s + 2 \left(\right. m - 2 \left.\right) s^{2} c - \left(\right. 4 m - 3 \left.\right) c \left]\right. = 0\)

tương đương (sau tính toán và đưa về \(t\)):

\(\left(\right. t - 1 \left.\right) \left(\right. t^{2} - 2 m \textrm{ } t + 4 m - 3 \left.\right) = 0.\)

Vậy nghiệm ứng với \(t\) là:

\(t = 1 \left(\right. \Leftrightarrow x = \frac{\pi}{4} \left.\right) ,\)

hoặc \(t\) là nghiệm của đa thức bậc hai

\(q \left(\right. t \left.\right) = t^{2} - 2 m t + 4 m - 3 = 0.\)

Ta cần số nghiệm \(t \in \left[\right. 0 , 1 \left]\right.\). Lưu ý \(t = 1\) luôn là một nghiệm (tương ứng \(x = \pi / 4\)). Để phương trình chỉ có một nghiệm trên \(\left[\right. 0 , \pi / 4 \left]\right.\) tức là không có nghiệm \(t\) nào khác nằm trong \(\left[\right. 0 , 1 \left.\right)\). Do đó phải đảm bảo rằng phương trình \(q \left(\right. t \left.\right) = 0\) không có nghiệm trong đoạn \(\left[\right. 0 , 1 \left.\right)\).

Phân tích \(q \left(\right. t \left.\right)\):

Đặt \(D_{q} = 4 \left(\right. \left(\right. m - 1 \left.\right) \left(\right. m - 3 \left.\right) \left.\right)\). Nếu \(1 < m < 3\) thì \(D_{q} < 0\)\(q\) không có nghiệm thực → không có nghiệm trong \(\left[\right. 0 , 1 \left.\right)\) → duy nhất \(t = 1\).Nếu \(m \geq 3\) thì hai nghiệm của \(q\)\(m \pm \sqrt{\left(\right. m - 1 \left.\right) \left(\right. m - 3 \left.\right)}\); cả hai đều \(> 1\) (không rơi vào \(\left[\right. 0 , 1 \left.\right)\)) → chỉ \(t = 1\).Nếu \(m \leq 1\) thì \(q\) có nghiệm thực; xét riêng:Nếu \(m < \frac{3}{4}\) thì một nghiệm của \(q\) âm và nghiệm kia \(> 1\) → không có nghiệm trong \(\left[\right. 0 , 1 \left.\right)\) → chỉ \(t = 1\).Nếu \(m = \frac{3}{4}\) thì \(q \left(\right. 0 \left.\right) = 0\) (tức \(t = 0\) là nghiệm) → hai nghiệm trong \(\left[\right. 0 , \frac{\pi}{4} \left]\right.\): \(t = 0\)\(t = 1\)không thỏa yêu cầu “duy nhất”.Nếu \(\frac{3}{4} < m < 1\) thì \(q\) có đúng một nghiệm nằm trong \(\left(\right. 0 , 1 \left.\right)\) → cộng với \(t = 1\) ta có ít nhất hai nghiệm → không thỏa.Nếu \(m = 1\) thì \(q \left(\right. t \left.\right) = \left(\right. t - 1 \left.\right)^{2}\) và duy nhất nghiệm trong đoạn là \(t = 1\) (bội) → vẫn một nghiệm.

Kết luận: phương trình có đúng một nghiệm \(x \in \left[\right. 0 , \pi / 4 \left]\right.\) khi và chỉ khi

\(\boxed{\textrm{ } m < \frac{3}{4} \text{ho}ặ\text{c} m \geq 1. \textrm{ }}\)

(Nói ngắn: tất cả \(m\) ngoại trừ đoạn \(\left[\right. \frac{3}{4} , 1 \left.\right)\); điểm \(m = \frac{3}{4}\) bị loại vì lúc đó có thêm nghiệm \(x = 0\).)

Huyền Nguyễn
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 8:36

\(\Leftrightarrow\left(cosx+1\right)\left(4cos2x-m.cosx\right)=m\left(1-cosx\right)\left(1+cosx\right)\)

\(\Leftrightarrow4cos2x-m.cosx=m\left(1-cosx\right)\)

\(\Leftrightarrow4cos2x=m\)

\(\Rightarrow cos2x=\dfrac{m}{4}\)

Pt có đúng 2 nghiệm thuộc đoạn đã cho khi và chỉ khi:

\(-1< \dfrac{m}{4}\le-\dfrac{1}{2}\Leftrightarrow-4< m\le-2\)

Có 2 giá trị nguyên của m thỏa mãn

Phạm Tuấn Kiệt
Xem chi tiết
Truong
21 tháng 9 lúc 20:24

Ko bít nữa.