Tìm m để phương trình có nghiệm
\(sin^2x+\left(m+3\right)cosx=3m+1\)
cho phương trình \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\)tìm m để phương trình có ít nhất 1 nghiệm thuộc đoạn\(\left[0;\dfrac{\Pi}{2}\right]\)
\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)
Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)
\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)
Tìm m để phương trình m.cos2x - (3m-2).cosx - m + 1 = 0 có đúng 3 nghiệm phân biệt thuộc \(\left[-\dfrac{3\pi}{2};0\right]\)
cho hàm số \(f\left(x\right)=\dfrac{9^x}{9^x+3}\). Tìm m để phương trình \(f\left(3m+\dfrac{1}{4}\sin x\right)+f\left(\cos^2x\right)=1\) có đúng 8 nghiệm phân biệt thuộc [0;3pi]
\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)
\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)
\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)
Do đó:
\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)
\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)
Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)
Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho
Chứng minh phương trình \(\dfrac{-cos^2x.sin^2x+mcosx-3m+1}{sin^2x-cosx-3}=m\) luôn có nghiệm với mọi m > 1
Tìm m để phương trình sin 2 x + 5 π 2 -m cosx +1 = 0 có đúng 3 nghiệm trên ( 0 ; 4 π 3 ]
A. -2 ≤ m ≤ -1
B. -2 < m ≤ - 1
C. -2 ≤ m < - 1
D. -2 ≤ m
Cho phương trình :
\(\left(4-6m\right)sin^3x+3\left(2m-1\right)sinx+2\left(m-2\right)sin^2x.cosx-\left(4m-3\right)cosx=0\)
Tìm m để phương trình có nghiệm duy nhất \(x\in[0;\frac{\pi}{4}]\)
Gọi \(s = sin x , \textrm{ }\textrm{ } c = cos x\). Vì \(x \in \left[\right. 0 , \pi / 4 \left]\right.\) nên \(c > 0\). Chia cả phương trình cho \(cos x\) được (không làm mất nghiệm vì \(cos x \neq 0\) trên đoạn này). Đặt \(t = tan x = \frac{s}{c} \in \left[\right. 0 , 1 \left]\right.\). Sau khi biến đổi ta được:
\(\frac{1}{cos x} \left[\right. \left(\right. 4 - 6 m \left.\right) s^{3} + 3 \left(\right. 2 m - 1 \left.\right) s + 2 \left(\right. m - 2 \left.\right) s^{2} c - \left(\right. 4 m - 3 \left.\right) c \left]\right. = 0\)tương đương (sau tính toán và đưa về \(t\)):
\(\left(\right. t - 1 \left.\right) \left(\right. t^{2} - 2 m \textrm{ } t + 4 m - 3 \left.\right) = 0.\)Vậy nghiệm ứng với \(t\) là:
\(t = 1 \left(\right. \Leftrightarrow x = \frac{\pi}{4} \left.\right) ,\)hoặc \(t\) là nghiệm của đa thức bậc hai
\(q \left(\right. t \left.\right) = t^{2} - 2 m t + 4 m - 3 = 0.\)Ta cần số nghiệm \(t \in \left[\right. 0 , 1 \left]\right.\). Lưu ý \(t = 1\) luôn là một nghiệm (tương ứng \(x = \pi / 4\)). Để phương trình chỉ có một nghiệm trên \(\left[\right. 0 , \pi / 4 \left]\right.\) tức là không có nghiệm \(t\) nào khác nằm trong \(\left[\right. 0 , 1 \left.\right)\). Do đó phải đảm bảo rằng phương trình \(q \left(\right. t \left.\right) = 0\) không có nghiệm trong đoạn \(\left[\right. 0 , 1 \left.\right)\).
Phân tích \(q \left(\right. t \left.\right)\):
Đặt \(D_{q} = 4 \left(\right. \left(\right. m - 1 \left.\right) \left(\right. m - 3 \left.\right) \left.\right)\). Nếu \(1 < m < 3\) thì \(D_{q} < 0\) → \(q\) không có nghiệm thực → không có nghiệm trong \(\left[\right. 0 , 1 \left.\right)\) → duy nhất \(t = 1\).Nếu \(m \geq 3\) thì hai nghiệm của \(q\) là \(m \pm \sqrt{\left(\right. m - 1 \left.\right) \left(\right. m - 3 \left.\right)}\); cả hai đều \(> 1\) (không rơi vào \(\left[\right. 0 , 1 \left.\right)\)) → chỉ \(t = 1\).Nếu \(m \leq 1\) thì \(q\) có nghiệm thực; xét riêng:Nếu \(m < \frac{3}{4}\) thì một nghiệm của \(q\) âm và nghiệm kia \(> 1\) → không có nghiệm trong \(\left[\right. 0 , 1 \left.\right)\) → chỉ \(t = 1\).Nếu \(m = \frac{3}{4}\) thì \(q \left(\right. 0 \left.\right) = 0\) (tức \(t = 0\) là nghiệm) → hai nghiệm trong \(\left[\right. 0 , \frac{\pi}{4} \left]\right.\): \(t = 0\) và \(t = 1\) → không thỏa yêu cầu “duy nhất”.Nếu \(\frac{3}{4} < m < 1\) thì \(q\) có đúng một nghiệm nằm trong \(\left(\right. 0 , 1 \left.\right)\) → cộng với \(t = 1\) ta có ít nhất hai nghiệm → không thỏa.Nếu \(m = 1\) thì \(q \left(\right. t \left.\right) = \left(\right. t - 1 \left.\right)^{2}\) và duy nhất nghiệm trong đoạn là \(t = 1\) (bội) → vẫn một nghiệm.Kết luận: phương trình có đúng một nghiệm \(x \in \left[\right. 0 , \pi / 4 \left]\right.\) khi và chỉ khi
\(\boxed{\textrm{ } m < \frac{3}{4} \text{ho}ặ\text{c} m \geq 1. \textrm{ }}\)(Nói ngắn: tất cả \(m\) ngoại trừ đoạn \(\left[\right. \frac{3}{4} , 1 \left.\right)\); điểm \(m = \frac{3}{4}\) bị loại vì lúc đó có thêm nghiệm \(x = 0\).)
Cho phương trình: \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\).
Xác định tham số m để phương trình có ít nhất một nghiệm \(x\in\left[-\frac{\pi}{4};\frac{\pi}{4}\right]\)
Cho phương trình \(\left(cosx+1\right)\left(4cos2x-mcosx\right)=msin^2x\) . Số các giá trị nguyên của m để phương trình có đúng 2 nghiệm thuộc \(\left[0;\dfrac{2\pi}{3}\right]\) là
\(\Leftrightarrow\left(cosx+1\right)\left(4cos2x-m.cosx\right)=m\left(1-cosx\right)\left(1+cosx\right)\)
\(\Leftrightarrow4cos2x-m.cosx=m\left(1-cosx\right)\)
\(\Leftrightarrow4cos2x=m\)
\(\Rightarrow cos2x=\dfrac{m}{4}\)
Pt có đúng 2 nghiệm thuộc đoạn đã cho khi và chỉ khi:
\(-1< \dfrac{m}{4}\le-\dfrac{1}{2}\Leftrightarrow-4< m\le-2\)
Có 2 giá trị nguyên của m thỏa mãn
Cho phương trình :
\(\left(4-6m\right)sin^3x+3\left(2m-1\right)sinx+2\left(m-2\right)sin^2x.cosx-\left(4m-3\right)cosx=0\)
Tìm m để phương trình có nghiệm duy nhất \(x\in[0;\frac{\pi}{4}]\)
Không biết OLM còn những người đủ tâm và đủ tầm đề làm những bài như thế này không :(((