Cho tg abc vuông tại a có ah là đg cao
cm:a) ab2=bc.bh
ac2=bc.ch
ab.ac=ah.ch
1/ah2=1/ab2+1/ac2
Cho 🔺ABC vuông tại A.Đường cao AH.hãy chứng minh:
a) AB2 = BC.BH\(\)
AC2= BC.CH
b) AH2 = BH.HC
c) AH.BC = AB.AC
Chỉ mình với ~
cái này chỉ chứng minh các tam giác đồng dạng chứa các cạnh trên là ra thui
Cho tam giác ABC vuông tại A , đường cao AH . CMRa, AB2 BH . BC , AC2 CH.BHb, AH2 AH.BHc, AB.AC AH.BCgải giùm nha mik cần gấp
a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)
=> AB/BC = BH/AB hay AB^2 = BH.HC
và cm tamgiac ABC đồng dạng với tamgiac HAC(g.g)
=> AC/BC = HC/AC hay AC^2 = CH.BH
a. Xét tg vuông ABC và tg vuông HBA có:
\(\widehat{ABH}\)chung
\(\Rightarrow\Delta ABC~\Delta HBA\)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)
\(\Rightarrow AB^2=HB.BC\)
Cmtt:\(\Delta ABC~HAC\)
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=BC.HC\)
b. lát làm tiếp nhá
b.Xét tg vuông ABH và tg vuông CAH có:
\(\widehat{ABH}=\widehat{HAC}\)(cùng phụ\(\widehat{BAH}\))
\(\Rightarrow\Delta ABH~\Delta CAH\)
\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=CH.BH\)
c.Chịu
Cho ΔABC vuông tại A (AB<AC), đường cao AH.
a)Chứng minh ΔABC đồng dạng ΔHBA từ đó suy ra AB2=BC.BH; AB.AC=BC.AH.
b)Chứng minh ΔABC đồng dạng ΔHAC từ đó suy ra AC2=BC.CH.
c)Tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. Chứng minh: ΔABK đồng dạng ΔCBI.
d)Chứng minh\(\dfrac{AI}{IC}=\dfrac{KH}{AK}\)
e)Tính tỉ số diện tích của ΔBHK và ΔBAI khi AB=3cm, AC=4cm.
f)Tính diện tích ΔBIC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>AC/HA=AB/HB=BC/AB
=>AB^2=BH*BC; AC*AB=AH*BC
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạngvới ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
d: AI/IC=AB/BC
KH/AH=BH/BA
mà AB/BC=BH/BA
nên AI/IC=KH/AH
Cho tam giác ABC có ba góc nhọn và AH là đường cao
a, Chứng minh: A B 2 + C H 2 = A C 2 + B H 2
b, Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. A B 2 + A C 2 = B C 2 2 + 2 A M 2
2. A C 2 - A B 2 = 2 B C . H M (với AC > AB)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Câu 20: Tam giác ABC vuông tại B suy ra:
A. AC2 = AB2 + BC2 B. AC2 = AB2 - BC2
C. BC2 = AB2 + AC2 D. AB2 = BC2 + AC2
Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C
C. Tại A D. Không phải là tam giác vuông
Câu 22: Cho ABC có = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:
A. 6,5 cm B. 5,5 cm C. 6 cm D. 6,2 cm
Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:
A. 3cm, 4dm, 5cm. B. 5cm, 14cm, 12cm.
C. 5cm, 5cm, 8cm. D. 9cm, 15cm, 12cm.
Câu 24: Cho ABC có AB = AC và = 600, khi đó tam giác ABC là:
A. Tam giác vuông B. Tam giác cân
C. Tam giác đều D. Tam giác vuông cân
Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:
A. ∠A ≤ 900 B. ∠A > 900 C. ∠A < 900 D. ∠A = 900
Ai giúp mình với ạ!
Câu 20: Tam giác ABC vuông tại B suy ra:
A. AC2 = AB2 + BC2 B. AC2 = AB2 - BC2
C. BC2 = AB2 + AC2 D. AB2 = BC2 + AC2
Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C
C. Tại A D. Không phải là tam giác vuông
Câu 22: Cho ABC có = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:
A. 6,5 cm B. 5,5 cm C. 6 cm D. 6,2 cm
Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:
A. 3cm, 4dm, 5cm. B. 5cm, 14cm, 12cm.
C. 5cm, 5cm, 8cm. D. 9cm, 15cm, 12cm.
Câu 24: Cho ABC có AB = AC và = 600, khi đó tam giác ABC là:
A. Tam giác vuông B. Tam giác cân
C. Tam giác đều D. Tam giác vuông cân
Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:
A. ∠A ≤ 900 B. ∠A > 900 C. ∠A < 900 D. ∠A = 900
Cho tam giác ABC vuông tại A có AH là đường cao . Chứng minh
a) AB2=BC.BH
b) AH2=BH.CH
c) \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
d) AH.BC=AB.AC
d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó:ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)
Cho tam giác ABC vuông tai A (AB<AC) có duong cao AH.
a) Chung minh: tam giác HBA - tam giác HAC-tam giác ABC
b) Chung minh: *AB.AC=AH.BC
*AB2= BH.BC
*AC2= CH.CB
*HA2 =HB.HC
*1/AH2 = 1/AB2 + 1/AC2
c) ke HK vuông góc AB (K thuoc AB ), goi M,N lan luot là trung diem cua AC và HK. Chung minh B;N;M thang hàng.
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
Xét ΔHAC và ΔABC có
góc H=góc A
góc C chung
=>ΔHAC đồng dạngvới ΔABC
b: Xet ΔABC vuông tại A có AH vuông góc BC
nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2
Bài1. Cho tam giác ABC vuông tại A. Kẻ đường cao AH (H thuộc BC).
a) Tìm các cặp tam giác đồng dạng.
b) Chứng minh AH2=BH.CH; AB2 = BH.BC; AC2 = CH.BC
c) Biết BH=9cm, CH = 16cm. Tính độ dài các cạnh của tam giác ABC.
Cho tam giác ABC vuông tai A (AB<AC) có duong cao AH. Goi D,E lan luot là hình chieu cua H lên AB và AC.Goi M là trung diem cua BC
*AD.AB=AH2 =AE.AC
*AD.AC+AE.AB=AB.AC
a) Chung minh :
*DB.DA+EC.EA=AH2
*BD.BA+CE.CA=AB2+AC2-2AH2
b) Chung minh tam giác ADE - tam giác ACB; AM vuông DE tai S và 1/AS=1/HB+1/HC
c)AF là phân giác góc BAH; AJ là phân giác góc CAH.Chung minh: *AB+AC=BC+FJ
*FH.FC=BF.CH
*JH.JB=JC.BH
d) AJ là phân giác cua góc HAC, goi L là trung diem cua AJ,BL cat AH tai N. Trên canh HJlay diem K (HK>KJ), Kéo dài KN cat AB tai Q. Chung minh: BA/BQ+BJ/BK+2.BL/BN
e) Goi X,Y,Z lan luot là tâm các duong phân giác trong cua tam giác ABH,ACH và AHM. Chung minh tam giác HXY-tam giác ABC và tính so đo góc BZM
a: Xét tứ giác ADHE có \(\hat{ADH}=\hat{AEH}=\hat{DAE}=90^0\)
nên ADHE là hình chữ nhật
Xét ΔDHA vuông tại D và ΔDBH vuông tại D có
\(\hat{DHA}=\hat{DBH}\left(=90^0-\hat{DHB}\right)\)
Do đó: ΔDHA~ΔDBH
=>\(\frac{DH}{DB}=\frac{DA}{DH}\)
=>\(DA\cdot DB=DH^2\)
Xét ΔEAH vuông tại E và ΔEHC vuông tại H có
\(\hat{EAH}=\hat{EHC}\left(=90^0-\hat{EHA}\right)\)
Do đó: ΔEAH~ΔEHC
=>\(\frac{EA}{EH}=\frac{EH}{EC}\)
=>\(EA\cdot EC=EH^2\)
ADHE là hình chữ nhật
=>\(HE^2+HD^2=HA^2\)
=>\(DA\cdot DB+EA\cdot EC=HA^2\)
Xét ΔBDH vuông tại D và ΔBHA vuông tại H có
góc DBH chung
Do đó: ΔBDH~ΔBHA
=>\(\frac{BD}{BH}=\frac{BH}{BA}\)
=>\(BD\cdot BA=BH^2\)
Xét ΔCEH vuông tại E và ΔCHA vuông tại H có
\(\hat{ECH}\) chung
DO đó: ΔCEH~ΔCHA
=>\(\frac{CE}{CH}=\frac{CH}{CA}\)
=>\(CE\cdot CA=CH^2\)
Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\hat{HAB}=\hat{HCA}\left(=90^0-\hat{HBA}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\frac{HA}{HC}=\frac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
\(BD\cdot BA+CE\cdot CA=BH^2+CH^2\)
\(=BH^2+CH^2+2\cdot HB\cdot HC-2\cdot HB\cdot HC\)
\(=\left(BH+CH\right)^2-2\cdot AH^2=BC^2-2\cdot AH^2\)
\(=AB^2+AC^2-2\cdot AH^2\)
b: Ta có: \(AD\cdot AB=AE\cdot AC\)
=>\(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\frac{AD}{AC}=\frac{AE}{AB}\)
Do đó: ΔADE~ΔACB
=>\(\hat{AED}=\hat{ABC};\hat{ADE}=\hat{ACB}\)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=MB=MC
MA=MC
=>ΔMAC cân tại M
=>\(\hat{MAC}=\hat{MCA}\)
\(\hat{MAC}+\hat{AED}=\hat{ABC}+\hat{ACB}=90^0\)
=>AM⊥DE tại S
c: ta có: \(\hat{CAF}+\hat{BAF}=\hat{CAB}=90^0\)
\(\hat{CFA}+\hat{HAF}=90^0\) (ΔHAF vuông tại H)
mà \(\hat{BAF}=\hat{HAF}\) (AF là phân giác của góc BAH)
nên \(\hat{CAF}=\hat{CFA}\)
=>CA=CF
Ta có: \(\hat{BAJ}+\hat{CAJ}=\hat{BAC}=90^0\)
\(\hat{BJA}+\hat{HAJ}=90^0\) (ΔHAJ vuông tại H)
mà \(\hat{CAJ}=\hat{HAJ}\) (AJ là phân giác của góc HAC)
nên \(\hat{BAJ}=\hat{BJA}\)
=>BA=BJ
AB+AC
=BJ+CF
=BF+FJ+CJ+JF
=BF+CJ+FJ+JF
=BC+FJ