Tìm x biết:
(x + 1/4) (x - 3/7) = 0
Bài 1: Tìm x biết
1) |5x - 3| = |7 - x|
2) 2 |3 x - 1| - 3x = 7
3) |2x + 3| + 4 = -2x
4) |x + 3/4| - 1/3 = 0
5) 1,6 - |x + 1,5| = 0
6) |x - 1,5| + |2,5 - x| = 0
1) \(|5x-3|=|7-x|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy...
2) \(2.|3x-1|-3x=7\)
\(\Leftrightarrow2.|3x-1|=7+3x\)
\(\Leftrightarrow\orbr{\begin{cases}2.\left(3x-1\right)=7+3x\\2.\left(3x-1\right)=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x-2=7+3x\\6x-2=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=9\\9x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{9}\end{cases}}\)
Vậy...
5) \(\text{1,6 - |x + 1,5| = 0}\)
\(|x + 1,5| = 1,6-0\)
\(\text{|x + 1,5| = 1,6}\)
\( |x | = 1,6-1,5\)
\(|x|=0,1\)
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
20. Tìm x biết : a)| 5/3 x|=|- 1/6 |; b)| 3/4 x- 3/4 |- 3/4 =|- 3/4 |; c)|x+ 3/5 |-|x- 7/3 |=0
a: \(\Leftrightarrow\left|\dfrac{5}{3}x\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{5}{3}=\dfrac{1}{6}\\x\cdot\dfrac{5}{3}=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}:\dfrac{5}{3}=\dfrac{3}{30}=\dfrac{1}{10}\\x=-\dfrac{1}{10}\end{matrix}\right.\)
b: \(\Leftrightarrow\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
\(\Leftrightarrow\left|x-1\right|=\dfrac{3}{2}:\dfrac{3}{4}=2\)
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
c: \(\Leftrightarrow\left|x+\dfrac{3}{5}\right|=\left|x-\dfrac{7}{3}\right|\)
\(\Leftrightarrow x+\dfrac{3}{5}=\dfrac{7}{3}-x\)
=>2x=44/15
hay x=22/15
Dạng 2 : Tìm x Bài 1: Tìm x biết :
a) ( x – 16 ) – 74 = 0 b) (3 x – 5) .7 mũ 3 = 7 mũ 4
c) 560 – 13x = 365 d) 275 – 7( x + 1) = 100
e) 3 x 7 14 3.2 mũ 3 f) 7x – 49 = 105
g) 5x – 16 = 14 h) 3x – 138 = 23 . 2 2
Tìm x biết a) f(2x-3)=3x+7
b) f(2x-7/x-3)=x=3/x-4(x khác 3,4)
c) f(x-1/x)=x+1/x^2 -4 (x khác 0)
B1 tìm số nguyên x,y biết
a) (x-1) . ( y+1) =5
b) (x+y) . (y-3)= -3
c) x . y = -35
B2 tìm x thuộc Z biết
a) 12 . x = 144
b) 0 . x = 4
c) 5 . x =0
d) 3 . (x-4)=0
e) (x+1) . (x-3)=0
f) (x2+7) . ( x2-49)=0
g) (x2+7) . (x2-49)<0
h) (x2+7) . ( x2-49) >0
Tìm x, biết:
a, (x-3)^2-4=0
b, x^2-2x=24
c,(2x-1)^2+(x+3)^2-5(x+7)(x-7)=0
b/ x2-2x=24
=> x2-2x-24=0
=> (x-6)(x+4)=0
=>x=6 hoặc x =-4
a/ (x-3)2 - 4 = 0
=> (x-3-2)(x-3+2)=0
=> (x-5)(x-1)=0
=> x = 5 hoặc x=1
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)