Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 8 2017 lúc 15:41

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

Hai tam giác vuông BME và CMF có

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)

⇒ BE = CF (hai cạnh tương ứng).

* Chú ý: Các em có thể suy nghĩ tại sao cần điều kiện AB ≠ AC ???

Righteous Angel
Xem chi tiết
Mori Ran
14 tháng 12 2018 lúc 22:23

Lời giải:

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

Hai tam giác vuông BME và CMF có

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)

⇒ BE = CF (hai cạnh tương ứng).

Kiến thức áp dụng

+ Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Giải bài 38 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

      ΔABC vuông tại A và ΔDEF vuông tại D có:

      BC = EF

      ∠B = ∠E

      ⇒ΔABC = ΔDEF

☘-P❣N❣T-❀Huyền❀-☘
Xem chi tiết
Nguyễn Ngân Hà
19 tháng 12 2016 lúc 18:29

A B C M x 1 2 E F

Nguyễn Ngân Hà
19 tháng 12 2016 lúc 18:32

Ta có hình vẽ trên:

Xét 2 tam giác vuông MBE và tam giác MCF có:

BM = MC (gt)

góc M1 = góc M2 (đối đỉnh)

suy ra tam giác MBE = tam giác MCF (cạnh huyền - góc nhọn)

suy ra BE = CF (2 cạnh tương ứng)

Vậy BE = CF

Hoàng Xuân Hải
Xem chi tiết
Nguyễn Việt Hoàng
16 tháng 7 2017 lúc 9:01

Hai tam giác vuông BME, CMF có:

BM=MC(gt)

=(đối đỉnh)

 Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).

Suy ra BE=CF.

Trần Phú Cường
16 tháng 7 2017 lúc 9:30

Vì tia Ax đi qua trung điểm M của BC => AM là đường trung tuyến của tam giác của tam giác ABC và BM = MC.

BE II CF vì 2 đường thẳng này cùng vuông góc với tia Ax(đl 1 bài từ vuông góc tới song song)

Xét tam giác BME và tam giác CMF có :

            Góc EBM = Góc MCF(so le trong)

            BM = MC.

            BME = CMF(2 góc đối đỉnh)

       => 2 tam giác này bằng nhau( g.c.g)

        => BE = CF(2 cạnh tương ứng)

tth_new
16 tháng 7 2017 lúc 19:39

Hai tam giác BME , CMF có:

BM = MC (gt)

\(\widehat{BME}=\widehat{CMF}\) đối đỉnh

Nên \(\Delta\)BME = \(\Delta\)CMF (cạnh huyền - góc nhọn)

Suy ra BE = CF

Nguyễn Hải Yến
Xem chi tiết
Vo Trong Duy
29 tháng 11 2014 lúc 17:34

Xét 2 TG vuông BME và CMF, ta có:

BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)

=>TG BME=TG CMF(cạnh huyền-góc nhọn)

=>BE=CF(2 cạnh tương ứng)

Phạm Tuấn Đạt
20 tháng 11 2017 lúc 14:31


Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)

Thắng  Hoàng
20 tháng 11 2017 lúc 14:32

Xét 2 TG vuông BME và CMF ta có:

BM=CM (M là điểm của BC):BME =CMF (2 góc đđ)

=>TG BME =TG CMF (Cạnh huyền -góc nhnj)

=>BE=CF(2 cạnh tương ứng)

Quynh Anh
Xem chi tiết
Nguyễn Bá Thúc Hào
5 tháng 2 2021 lúc 7:21

xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền 

suy ra EM = \(\frac{1}{2}\)BC        (1)

xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền 

suy ra FM = \(\frac{1}{2}\)BC        (2)

từ (1) và (2) suy ra M là trung điểm EF

mà M là trung điểm của BC

từ 2 điều đó suy ra BECF là hình bình hành 

suy ra BE = CF

Khách vãng lai đã xóa
Hikari Kun
Xem chi tiết
Phuong Thao Hoang
Xem chi tiết
soyeon_Tiểubàng giải
16 tháng 11 2016 lúc 21:30

Ta có hình vẽ:

x A B C M E F

Δ CFM có: CFM + FMC + MCF = 180o

Δ EMB có: EMB + MBE + BEM = 180o

Mà CFM = MEB = 90o

FMC = BME (đối đỉnh) nên MCF = MBE

Xét Δ MCF và Δ MBE có:

MCF = MBE (cmt)

CM = BM (gt)

FMC = EMB (đối đỉnh)

Do đó, Δ MCF = Δ MBE (c.g.c)

=> CF = BE (2 cạnh tương ứng)

Phạm Bình Minh
30 tháng 11 2017 lúc 20:08
Huỳnh Quang -7A
Xem chi tiết