Cho 2 hàm số y=(3m+2)x+5 và y=-x-1 (m là tham số khác -1) có đồ thị cắt nhau tại điểm A(x'y'). Tìm m để P=y'22+x'-3 đạt GTNN
Câu 2: Cho hàm số y = ( 3m-1)x + m +2 . Tìm tham số m để đồ thị hàm số cắt trục tung tại điểm có tung độ là −3.
Câu 3: Cho hàm số y = 2mx-3m+2 . Tìm tham số m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 2
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5
cho hàm số y bằng ( 3m +2 ).2 + 5 ( m khác -1 ) và y bằng -x-1 có đồ thị cắt nhau tại A(X,Y). tìm m để p bằng y^2 + 2x -3 đạt gtnn
Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:
Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:
(3m+2)⋅2+5=−X−1
=> m = -(x+10)/6
Bước 2: Tính giá trị p tại điểm A:
Ta đã biết Y=−X−1, thay vào hàm số p:
p=Y^2+2X−3
p=(−X−1)^2+2X−3
p=X^2+2X+1+2X−3
p=X^2+4X−2
Bước 3: Tìm giá trị nhỏ nhất của p:
Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.
Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:
Xmin=-b/2a
Ymin=f(Xmin)
Xmin=−2
Ymin=(−2)2+4⋅(−2)−2=0
Vậy giá trị nhỏ nhất của p là pmin=0.
Bước 4: Tìm giá trị m tương ứng với pmin=0:
Ta đã biết m=−(X+10)/6, thay pmin=0 vào đó:
0=−(Xmin+10)/6
=> 0=-4/3
Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin=0.
cho hai hàm số y=(3m+2) x + 5 ( m khác -1 ) và y=-x-1 có đồ thị cắt nhau tại điểm A(x;y) . Tìm các giá trị của m để biểu thức P= y2 + 2x - 3
Cho 2 hàm số y=(3m+2)x +5 với m khác 1 và y= -x-1 có đồ thị cắt nhau tại điểm A(x;y). Tìm các giá trị của m để biểu thức P= y2+ 2x-3 đạt giá trị nhỏ nhất
Help me! Thanks
cho hai hàm số y=(3m+2)x+5 (với m khác -1) và y=-x-1 có đồ thị cắt nhau tại điểm A(x;y).
Tìm các giá trị cuả m để biểu thức P= y2 + 2x - 3 đạt GTNN
không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ
hoành độ giao điểm A là nghiệm của phương trình:
(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)
\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)
\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\).
=> Min =2 <=> m=0
Scsdcscsdvvzssdvvds
cho hàm số y=(m-2)x+5 có đồ thị đường thẳng là (d)(m là tham số,m khác 2)
a, vẽ đồ thị hàm số trên với m = 4
b,tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoanh độ là 2
b: Thay x=2 và y=0 vào (d), ta được:
2m-4+5=0
hay m=-1/2
Cho hàm số y=\(x^2\) và y=x+m (m là tham số)
1)Tìm m để đồ thị hai hàm số cắt nhau tại 2 điểm phân biệt A, B.
2)Tìm m để AB=3\(\sqrt{2}\)
1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)
\(\Leftrightarrow x^2-x-m=0\) ( I )
Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)
- Để 2 hàm số cắt nhau tại hai điểm phân biệt
<=> PT ( I ) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m>-\dfrac{1}{4}\)
2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)
Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)
TH1 : \(x_1-x_2=3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
TH2 : \(x_1-x_2=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
Vậy m = 2 thỏa mãn yêu cầu đề bài .
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.
B.
C.
D.
Cho hàm số y=(m-2)x+3(m khác 2 ) có đồ thị là(d1) và hàm số y=-x+m^2+2 có đồ thị là (d2) tìm m để (d1)và (d2) cắt nhau tại một điểm trên trục tung
Để (d1) cắt (d2) tại một điểm nằm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne-1\\m^2+2=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m^2=1\end{matrix}\right.\Leftrightarrow m=-1\)
Cho hàm số y=(2m+3)x-2m+5 ( với m là tham số và m ≠-1,5) có đồ thị hàm số là đường thẳng (d)
a.tìm m để hàm số trên nghịch biến
b. tìm m để (d) song song với đường thẳng (d1):y=(3m-2)x+1
c.tìm m để (d) cắt đường thẳng (d2):y=3x-1 tại một điểm có tung độ bằng 5
d.tìm m để (d) ctaws trục Ox ,Oy tại 2 điểm A và B sao cho diện tích tam giác AOB bằng 1
a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0
=>2m<-3
=>\(m< -\dfrac{3}{2}\)
b: Để (d)//(d1) thì
\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)
=>m=5
c: Thay y=5 vào y=3x-1, ta được:
3x-1=5
=>3x=6
=>x=6/3=2
Thay x=2 và y=5 vào (d), ta được:
\(2\left(2m+3\right)-2m+5=5\)
=>\(4m+6-2m+5=5\)
=>2m+11=5
=>2m=-6
=>m=-6/2=-3
d: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)
=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)
\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)
=>\(B\left(-2m+5;0\right)\)
\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)
\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)
=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)
=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)
=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)
=>\(4m^2-20m+25-4m-6=0\)
=>\(4m^2-24m+19=0\)
=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)