Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm kim liên
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 13:13

Câu 2: 

Thay x=0 và y=-3 vào (d), ta được:

m+2=-3

hay m=-5

ha nguyen thi
Xem chi tiết
Le The Nam
1 tháng 8 2023 lúc 21:59

Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:

Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:

(3m+2)⋅2+5=−X−1

=> m = -(x+10)/6

Bước 2: Tính giá trị p tại điểm A:

Ta đã biết Y=−X−1, thay vào hàm số p:

p=Y^2+2X−3

p=(−X−1)^2+2X−3

p=X^2+2X+1+2X−3

p=X^2+4X−2

Bước 3: Tìm giá trị nhỏ nhất của p:

Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.

Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:

Xmin​=-b/2a​

Ymin​=f(Xmin​)

Xmin​=−2

Ymin​=(−2)2+4⋅(−2)−2=0

Vậy giá trị nhỏ nhất của p là pmin​=0.

Bước 4: Tìm giá trị m tương ứng với pmin​=0:

Ta đã biết m=−(X+10)/6​, thay pmin​=0 vào đó:

0=−(Xmin​+10)/6​

=> 0=-4/3​

Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin​=0.

 

Hoàng Lê
Xem chi tiết
LinhCatherine
Xem chi tiết
Phạm Thị Duyên
Xem chi tiết
Nguyễn Thị BÍch Hậu
9 tháng 6 2015 lúc 19:16

không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ

Nguyễn Thị BÍch Hậu
9 tháng 6 2015 lúc 19:16

hoành độ giao điểm A là nghiệm của phương trình:

(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)

\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)

\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\)

=> Min =2 <=> m=0

Nguyễn Tâm Anh
20 tháng 5 2020 lúc 18:29

Scsdcscsdvvzssdvvds

Khách vãng lai đã xóa
Phạm G Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 21:15

b: Thay x=2 và y=0 vào (d), ta được:

2m-4+5=0

hay m=-1/2

 

Linh Nguyen
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 2 2021 lúc 10:42

1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)

\(\Leftrightarrow x^2-x-m=0\) ( I )

Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)

- Để 2 hàm số cắt nhau tại hai điểm phân biệt

<=> PT ( I ) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m>-\dfrac{1}{4}\)

2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)

TH1 : \(x_1-x_2=3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

TH2 : \(x_1-x_2=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

Vậy m = 2 thỏa mãn yêu cầu đề bài .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2018 lúc 7:31

Đáp án B

pixealmon How
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 20:33

Để (d1) cắt (d2) tại một điểm nằm trên trục tung thì

\(\left\{{}\begin{matrix}m-2\ne-1\\m^2+2=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m^2=1\end{matrix}\right.\Leftrightarrow m=-1\)

Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 14:04

a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0

=>2m<-3

=>\(m< -\dfrac{3}{2}\)

b: Để (d)//(d1) thì

\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)

=>m=5

c: Thay y=5 vào y=3x-1, ta được:

3x-1=5

=>3x=6

=>x=6/3=2

Thay x=2 và y=5 vào (d), ta được:

\(2\left(2m+3\right)-2m+5=5\)

=>\(4m+6-2m+5=5\)

=>2m+11=5

=>2m=-6

=>m=-6/2=-3

d: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)

=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)

\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)

=>\(B\left(-2m+5;0\right)\)

\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)

\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)

=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)

=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)

=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)

=>\(4m^2-20m+25-4m-6=0\)

=>\(4m^2-24m+19=0\)

=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)