Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngoc tram
Xem chi tiết
Hiếu Tạ
Xem chi tiết
Lê Ng Hải Anh
28 tháng 6 2019 lúc 9:38

\(B=x^2+y^2-x+4y+10\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{23}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{23}{4}\ge\frac{23}{4}\forall x\)

=> Min B = 23/4 tại \(\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)

Lê Ng Hải Anh
28 tháng 6 2019 lúc 9:43

\(C=2x^2-6x\)

\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)

=> Min C = -9/2 tại \(x=\frac{3}{2}\)

Trần Nguyễn Việt Hoàng
Xem chi tiết
Trần Nguyễn Việt Hoàng
5 tháng 1 2020 lúc 8:23

các anh chị pro toán giúp em

Khách vãng lai đã xóa
Trần Nguyễn Việt Hoàng
Xem chi tiết
Trần Nguyễn Việt Hoàng
27 tháng 12 2019 lúc 20:06

có ai giúp em không

Khách vãng lai đã xóa
Toản Hồ
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Phạm Văn Long Phước
Xem chi tiết
thảo phương
Xem chi tiết
Akai Haruma
18 tháng 1 2020 lúc 23:34

Biểu thức không có giá trị nhỏ nhất. Bạn xem lại đề.

Khách vãng lai đã xóa
tung nguyen viet
Xem chi tiết