Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Trịnh Long
1 tháng 12 2019 lúc 21:49

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

Khách vãng lai đã xóa
Đàm Tùng Vận
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 9 2021 lúc 23:31

a: Ta có: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(-x^2+6x-19\)

\(=-\left(x^2-6x+19\right)\)

\(=-\left(x^2-6x+9+10\right)\)

\(=-\left(x-3\right)^2-10< 0\forall x\)

Nguyễn Thùy Chi
Xem chi tiết
Phạm Tuấn Đạt
19 tháng 8 2018 lúc 9:33

\(2x^2+2y^2-2xy-4x-4y+8\)

\(=x^2-2xy+y^2+x^2-4x+y^2-4y+8\)

\(=\left(x-y\right)^2+x^2-4x+4+y^2-4x+4\)

\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\)

\(\RightarrowĐPCM\)

Vũ Thùy Linh
Xem chi tiết
Yim Yim
20 tháng 4 2018 lúc 21:22

\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6>0\forall x\)

Vũ Thùy Linh
20 tháng 4 2018 lúc 21:24

có thể trình bày cả bài ra đc k ạ

Phùng Minh Quân
20 tháng 4 2018 lúc 21:24

Ta có : 

\(x^2-4x+10\)

\(=\)\(\left(x^2-2.2x+2^2\right)+6\)

\(=\)\(\left(x-2\right)^2+6\ge0+6=6>0\)

Vậy \(x^2-4x+10\ge0\) \(\forall x\inℝ\)

Chúc bạn học tốt ~ 

Nguyễn Thùy Chi
Xem chi tiết
Mysterious Person
22 tháng 8 2018 lúc 20:41

ta có : \(4x^2+4y^2-2xy-6x-6y+6\)

\(=x^2-2xy+y^2+3x^2-6x+3+3y^2-6y+3\)

\(=\left(x-y\right)^2+3\left(x-1\right)^2+3\left(y-1\right)^2\ge0\forall x;y\left(đpcm\right)\)

Lê Anh Ngọc
Xem chi tiết
Hồng Phúc
10 tháng 10 2020 lúc 16:11

Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)

\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)

Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)

\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến

Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)

\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Thành Đăng
Xem chi tiết
Yukru
16 tháng 8 2018 lúc 21:08

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)

Đỗ Hàn Thục Nhi
Xem chi tiết
tthnew
28 tháng 6 2019 lúc 8:41

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

Hương Nguyễn Quỳnh
18 tháng 9 2019 lúc 18:14

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x

Hương Nguyễn Quỳnh
18 tháng 9 2019 lúc 20:13

b. x2 + x + 1

= x2 + 2.x.\(\frac{1}{2}\)+ (\(\frac{1}{2}\))2 \(\frac{1}{4}\) + 1

= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Vì (x + \(\frac{1}{2}\))2 ≥ 0 ∀ x ⇒ (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\frac{3}{4}\) ∀ x

Vậy (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) ≥ 0 hay x2 + x + 1 > 0 ∀ x.

Nguyễn Thành Đăng
Xem chi tiết
肖一战(Nick phụ)
16 tháng 8 2018 lúc 20:11

a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)

\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)

b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)

c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)

\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)

nguyễn thị thanh thùy
16 tháng 8 2018 lúc 20:16

\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)

 vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\)  \(\ge0\) \(\Rightarrow dpcm\)

b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)

c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)

\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)

nguyễn thị thanh thùy
16 tháng 8 2018 lúc 20:18

hihi mk ấn máy tính sia hết các câu r nha , sr , xem bạn bên dưới ý mk ấn lộn vs lác sai đầu bài ,sory