Tìm m để y = x3 + 3x2 + (m+1)x + 4m nghịch biến trên (-1,1)
Tìm m để hàm số y = - x 3 + 3 x 2 + 3 m x + m - 1 nghịch biến trên khoảng ( 0 ; + ∞ )
A. m > - 1
B. m ≤ - 1
C. m ≤ 1
D. m < 1
Tìm tất cả các giá trị của tham số m để hàm số y = - x 3 + 3 x 2 + m x + 1 nghịch biến trên khoảng
A. m ≤ 0
B. m ≥ - 3
C. m ≥ 0
D. m ≤ - 3
Tìm tất cả các giá trị của tham số m để hàm số y = - x 3 + 3 x 2 + m x + 1 nghịch biến trên khoảng ( 0 ; + ∞ )
A. m ≤ 0
B. m ≥ - 3
C. m ≥ 0
D. m ≤ - 3
Tìm tất cả các giá trị của tham số m để hàm số y = - x 3 + 3 x 2 + m x + 1 nghịch biến trên khoảng ( 0 ; + ∞ )
A. m ≤ 0
B. m ≥ - 3
C. m ≥ 0
D. m ≤ - 3
Tìm các giá trị thực của m để hàm số y = − x 3 − 3 x 2 + m + 1 x − 3 nghịch biến trên tập xác định.
A. m ≤ − 3
B. m < − 4
C. m ≤ − 4
D. m < − 3
Tìm tất cả các giá trị thực của tham số m để hàm số y = − x 3 + 3 x 2 − m x + m nghịch biến trên ℝ
A. m ≤ 3
B. m < 3
C. m ≥ 3
D. m < 3
Cho hàm số y = - x 3 + 3 x 2 + 3 m x - 1 , tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0; +∞)
A. m < 1
B. m ≥ 1
C. m ≤ -1
D. m ≥ -1
Ta có y ' = - 3 x 2 + 6 x + 3 m . Hàm số nghịch biến trên khoảng (0; +∞) nếu y' ≤ 0 trên khoảng (o; +∞)
Cách 1: Dùng định lí dấu tam thức bậc hai.
Xét phương trình - 3 x 2 + 6 x + 3 m . Ta có Δ' = 9(1 + m)
TH1: Δ' ≤ 0 => m ≤ -1 khi đó, - 3 x 2 + 6 x + 3 m < 0 nên hàm số nghịch biến trên R .
TH2: Δ' > 0 => m > -1; y' = 0 có hai nghiệm phân biệt là x = 1 ±√(1+m) .
Hàm số nghịch biến trên (0; +∞) <=> 1 + √(1+m) ≤ 0, vô lí.
Từ TH1 và TH2, ta có m ≤ -1
Cách 2: Dùng phương pháp biến thiên hàm số.
Ta có y ' = - 3 x 2 + 6 x + 3 m ≤ 0 , ∀x > 0 <=> 3 m ≤ 3 x 2 - 6 x , ∀x > 0
Từ đó suy ra 3 m ≤ m i n ( 3 x 2 - 6 x ) với x > 0
Mà 3 x 2 - 6 x = 3 ( x 2 - 2 x + 1 ) - 3 = 3 ( x - 1 ) 2 - 3 ≥ - 3 ∀ x
Suy ra: m i n ( 3 x 2 – 6 x ) = - 3 khi x= 1
Do đó 3m ≤ -3 hay m ≤ -1.
Chọn đáp án C.
Tính giá trị của m để hàm số y = x 3 + 3 x 2 + m x + m nghịch biến trên một đoạn có độ dài l = 1
A. m = - 9 4
B. m = 9 4
C. m = 1
D. m = -1
Tập xác định: D = R
y ' = 3 x 2 + 6 x + m có ∆ ' = 9 - 3 m
Nếu m ≥ 3 thì y ' ≥ 0 hàm số đồng biến trên R(loại)
Nếu m < 3 thì có 2 nghiệm phân biệt x 1 , x 2 x 1 < x 2
Hàm số nghịch biến trên đoạn x 1 ; x 2 với độ dài l = x 1 - x 2 .
Ta có x 1 + x 2 = - 2 ; x 1 x 2 = m 3 . Yêu cầu bài toán
⇔ x 1 + x 2 2 - 4 x 1 x 2 = 1 ⇔ x = 9 4
Đáp án B
Tập hợp tất cả các giá trị thực của tham số m để hàm số y = - x 3 - 6 x 2 + ( 4 m - 9 ) x + 4 nghịch biến trên khoảng - ∞ ; - 1 là
A. ( - ∞ ; 0 ]
B. [ - 3 4 ; + ∞ )
C. ( - ∞ ; - 3 4 ]
D. [ 0 ; + ∞ )
Tập hợp tất cả các giá trị thực của tham số m để hàm số y = - x 3 - 6 x 2 + ( 4 m + 9 ) x + 4 nghịch biến trên khoảng (- ∞ ; 1) là
A. (- ∞ ; 0]
B. [- 3 4 ;+ ∞ )
C. (- ∞ ;- 3 4 ]
D. (0;+ ∞ ]
Đáp án C
Phương pháp:
Hàm số y = f(x) nghịch biến trên D khi và chỉ khi và bằng 0 tại hữu hạn điểm
Cách giải:
Ta có:
Hàm số đã cho nghịch biến trên
Xét hàm số: ta có: