tìm x y biết x^3+y^3-3xy +1 là số nguyên tố
Tìm các số nguyên dương x,y thoả mãn x^3+y^3-3xy+1 là số nguyên tố
Tìm các số nguyên dương a,y,z thỏa mãn \(x^3+y^3-3xy+1\) là số nguyên tố.
phải là tìm các số x,y,z thỏa mãn chứ bạn
VÌ: \(x^3+y^3+1-3xy=\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)
Do: \(x^3+y^3+1-3xy\) là 1 số nguyên tố
=> \(\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\) là 1 số nguyên tố.
Do: \(x+y+1>1\left(x,y\inℕ^∗\right)\)
=> \(x^2+y^2-xy-x-y+1=1\)
<=> \(2x^2+2y^2-2xy-2x-2y+2=2\)
<=> \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
Do: \(\left(x-y\right)^2;\left(x-1\right)^2;\left(y-1\right)^2\) đều là các số chính phương.
=> Ta xét 3 trường hợp sau:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\) ; \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{cases}}\) ; \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{cases}}\)
Do: x; y thuộc N*
=> vs TH1 được: \(x=y=2\)
THỬ LẠI THÌ: \(x^3+y^3+1-3xy=8+8+1-12=5\) (CHỌN)
TH2; TH3 tương tự ra \(x=1;y=2\) và \(x=2;y=1\)
THỬ LẠI \(\orbr{\begin{cases}x^3+y^3+1-3xy=1^3+2^3+1-3.1.2=4\\x^3+y^3+1-3xy=2^3+1^3+1-3.2.1=4\end{cases}}\) (ĐỀU LOẠI HẾT).
VẬY \(x=y=2\) là nghiệm duy nhất.
Hermit Hermit ở trường hợp thứ nhất của bạn bị thiếu ạ! \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\) phải là thế này, bạn thiếu (y-1)2=1
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương
tìm cặp số nguyên tố x,y
a,x+y=3xy
b,x (y+3)+y=1
1. Cho p là số nguyên tố lớn hơn 3. Hỏi p^2 là số nguyên tố hay hợp số ? Giải thích.
2. Tìm số tự nhiên x, y biết : 3xy - 5y + 6x = 30 .
1)ta có:
p2=p.p mà p>3 =>p.p chia hết cho p
=>p2 là hợp số
Cho p là số nguyên tố sao cho phương trình x^3 + y^3 - 3xy = p - 1 có nghiệm nguyên dương. Tìm giá trị lớn nhất của p
Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)
\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)
Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p
+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.
+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:
\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)
Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)
\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)
Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5
Khi đó x = y = 2.
tìm x,y biết : a, 3xy-5y+6x=30 .
b,Cho p ϵ P ; p >3 hỏi p2 + 2006 là số nguyên tố hay hợp số ?
3xy - 5y + 6x = 30
<=> y(3x - 5) + (6x - 10) = 20
<=> y(3x - 5) + 2(3x - 5) = 20
<=> (3x - 5)(y + 2) = 20
Ta có bảng sau:
3x - 5 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
y + 2 | 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 2 | 4/3 | 7/3 | 1 | 3 | 1/3 | 10/3 | 0 | 5 | -5/3 | 25/3 | -5 |
y | 0 | -22 | 8 | -12 | 3 | -7 | 2 | -6 | 0 | -4 | -1 | -3 |
1) Cho các số nguyên \(x,y\)thỏa mãn \(x^3+y^3=2016\). Chứng minh rằng: \(\left(x+y\right)^3+3xy\left(x+y\right)\)chia hết cho 18.
2) Tìm tất cả các số nguyên tố \(p\)sao cho\(p^2+14\)là số nguyên tố.
3) Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
1 ) Tìm số nguyên tố p , sao cho - + 2 và p + 4 cũng là các số nguyên tố ?
2 )Tổng của 2 số nguyên tố có thể bằng 2009 được không ? Tại sao ?
3 ) Tìm các số nguyên tố x và 7 , biết :
a ) ( 2x + 1 ) ( y + 3 ) = 10
b ) ( x + 1 ) ( 2y - 1 ) = 12
c ) x - 3 = y ( x + 2 )
d )( x + 6 ) =y ( x - 1 )
e ) ( 3x - 2 ) ( 2y - 3 ) = 1
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
3)
a) (2x + 1)(y + 3) = 10
=> 2x + 1 và y + 3 là các ước của 10
Ư(10) = {1; 2; 5; 10}
Lập bảng giá trị:
2x + 1 | 1 | 10 | 2 | 5 |
y + 3 | 10 | 1 | 5 | 2 |
x | 0 | 4,5 | 0,5 | 2 |
y | 7 | -2 | 2 | -1 |
Đối chiếu điều kiện x,y ∈ N
=> x = 0, y = 7
Vậy x = 0, y = 7