Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 9 2019 lúc 16:19

Chọn C.

+) TXĐ: D = R

+) Ta có đạo hàm y’ = ( x2 - 2( m + 3) x + 4) .ex .

Hàm số nghịch biến trên TXĐ khi y’ = ( x2 - 2( m + 3) x + 4) .ex ≤ 0 mọi x

khoa ho minh
Xem chi tiết
gheghdwhkwhwqhdhw,
4 tháng 2 2023 lúc 11:58

0

reveluv carat
Xem chi tiết
Bò Dĩm
Xem chi tiết
Huỳnh Tâm
24 tháng 12 2016 lúc 11:23

\(y'=\left(2m+1\right)\cos x+3-m\)

Hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)

\(\Leftrightarrow\left(2m+1\right)\cos x\le m-3\) (1)

*TH: \(2m+1< 0\Leftrightarrow m< \frac{-1}{2}\), ta có

\(\left(1\right)\Leftrightarrow\cos x\ge\frac{m-3}{2m+1}\) (không thoả với mọi x)

*TH: \(2m+1>0\Leftrightarrow m>\frac{-1}{2}\), ta có

\(\left(1\right)\Leftrightarrow\cos x\le\frac{m-3}{2m+1}\) (2)

(2) đúng với mọi x khi và chỉ khi \(\left|\frac{m-3}{2m+1}\right|>1\Leftrightarrow\left[\begin{array}{nghiempt}m< -4\\m>\frac{2}{3}\end{array}\right.\)

kết hợp \(m>\frac{-1}{2}\) ta có m > 3/2 là giá trị cần tìm

 

 

 

Thi Ha Dang
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2022 lúc 8:22

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

Nguyễn Huy Tú
19 tháng 2 2022 lúc 8:24

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

Nguyễn Huy Tú
19 tháng 2 2022 lúc 8:28

Bài 2 

Với x < 0 thì hàm số trên nghịch biến do m^2 + 1 > 0 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 4 2017 lúc 7:24

Tiến Nguyễn
Xem chi tiết
mai thị huỳnh phương
21 tháng 8 2016 lúc 20:36

cậu xem đúng thì k  y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản  có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2  sao cho |x2-x1| >1  (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0

Oo Bản tình ca ác quỷ oO
21 tháng 8 2016 lúc 20:31

mk mới hok lớp 8 nên cái tay bó tay!!! ^^

346456454574575675756768797835153453443457657656565

Phượng Chu
Xem chi tiết
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:34

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3