Tính :
\(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)
\(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)
đề bài rút gọn ak
mình đang cần gấp
\(=\sqrt{\left(3-2\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\\ =2\sqrt{5}-3-2-\sqrt{5}=\sqrt{5}-5\)
Ta có: \(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)
\(=2\sqrt{5}-3-\sqrt{5}-2\)
\(=\sqrt{5}-5\)
\(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)
Tính
Giúp mk nhé cảm ơn ơn mik sẽ tick cho
\(=\sqrt{20-2.\sqrt{20.9}+9}-\sqrt{4+2.2\sqrt{5}+5}\)
\(=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\)
\(=2\sqrt{5}-3-\left(2+\sqrt{5}\right)\)
\(=\sqrt{5}-5\)
Tính:
a) A=\(2\sqrt{3+\sqrt{5-13+\sqrt{48}}}\)
b) B=\(\sqrt{\sqrt{15}-\sqrt{3-\sqrt{29-2\sqrt{180}}}}\)
\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-2\sqrt{180}}}}}\)
\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-2\cdot3\cdot2\sqrt{5}}}}}=\)\(\sqrt{\sqrt{5-\sqrt{3-2\sqrt{5}+3}}}=\sqrt{\sqrt{5-\sqrt{6-2\sqrt{5}}}}\)=\(\sqrt{\sqrt{5-\sqrt{5}+1}}=\sqrt{1}=1\)
Tính:
a.\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b.\(\sqrt{13+\sqrt{30\sqrt{2+\sqrt{9+4\sqrt{2}}}}}\)
c.\(\frac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
a/ \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)
b,c tương tự
Tính
\(D=\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}.\)
\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ
Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc
đề câu B chả sai đi chỗ nào :)) tại tụi m tách sai thôi =))
\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)
\(B=\sqrt{\left(3\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}\) ( tách ra hằng đẳng thức )
\(B=3\sqrt{3}+\sqrt{2}-3\sqrt{3}+\sqrt{5}\)
\(B=\sqrt{2}+\sqrt{5}\)
nuột không :))
rút gọn
\(\sqrt{29+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}+5\sqrt{2}\)
Ta có: \(\sqrt{29+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}\cdot1+1}}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+2\sqrt{2}+1}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2+2\sqrt{2}\cdot1+1}}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{\left(\sqrt{2}+1\right)^2}}+5\sqrt{2}\)
\(=\sqrt{29+30\left(\sqrt{2}+1\right)}+5\sqrt{2}\)
\(=\sqrt{29+30\sqrt{2}+30}+5\sqrt{2}\)
\(=\sqrt{9+2\cdot3\cdot5\sqrt{2}+50}+5\sqrt{2}\)
\(=\sqrt{\left(3+5\sqrt{2}\right)^2}+5\sqrt{2}\)
\(=3+5\sqrt{2}+5\sqrt{2}=3+10\sqrt{2}\)
Thực hiện các phép tính sau:
\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
rút gọn
a, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b\(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
thankyou các bạn trước
\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
\(b,=\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) \(=\sqrt{3+30\sqrt{2+\sqrt{8+2\sqrt{8}+1}}}\)
\(=\sqrt{3+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)\(=\sqrt{3+30\sqrt{3+\sqrt{8}}}=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{3+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{3+30\sqrt{2}+30}=\sqrt{33+30\sqrt{2}}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
=1
b) Ta có: \(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{3+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{33+30\sqrt{2}}\)