1 x(y-z) + y (z - x) +z ( x - y)
2 x(y + z- yz ) - y( z+ x-zx ) + zy+xchứng minh A=(xy+zx+1)/(xy+x+y+1)+(yz+zy+1)/(yz+y+z+1)+(zx+zx+1)/(zx+x+z+1) không thuộc x, y, z
làm nhanh giùm mình nha ! đang cần gấp <:)
+cho x,y,z là các số dương và x+y+z=1. Tìm GTLN A=x√yz+y√zx+z√zy
cho các số thực dương thoả mãn: \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
CMR: \(\sqrt{\dfrac{xy}{x+y+2z}}+\sqrt{\dfrac{yz}{y+z+2x}}\sqrt{\dfrac{zx}{z+x+zy}}\le\dfrac{1}{2}\)
Có \(\sqrt{\dfrac{xy}{x+y+2z}}=\dfrac{\sqrt{xy}}{\sqrt{x+y+2z}}\)\(=\dfrac{2\sqrt{xy}}{\sqrt{\left(1+1+2\right)\left(x+y+2z\right)}}\)\(\le\dfrac{2\sqrt{xy}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}\) (theo bunhia dưới mẫu)\(\le\dfrac{2\sqrt{xy}}{4}\left(\dfrac{1}{\sqrt{x}+\sqrt{z}}+\dfrac{1}{\sqrt{y}+\sqrt{z}}\right)\)
\(\Leftrightarrow\sqrt{\dfrac{xy}{x+y+2z}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{z}}+\dfrac{\sqrt{xy}}{\sqrt{y}+\sqrt{z}}\right)\)
Tương tự cũng có:
\(\sqrt{\dfrac{yz}{y+z+2x}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{yz}}{\sqrt{y}+\sqrt{x}}+\dfrac{\sqrt{yz}}{\sqrt{z}+\sqrt{x}}\right)\)
\(\sqrt{\dfrac{zx}{z+x+2y}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{zx}}{\sqrt{z}+\sqrt{y}}+\dfrac{\sqrt{zx}}{\sqrt{x}+\sqrt{y}}\right)\)
Cộng vế với vế ta được:
\(VT\le\dfrac{1}{2}\left(\dfrac{\sqrt{xy}+\sqrt{yz}}{\sqrt{x}+\sqrt{z}}+\dfrac{\sqrt{xy}+\sqrt{zx}}{\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{yz}+\sqrt{zx}}{\sqrt{x}+\sqrt{y}}\right)\)
\(\Leftrightarrow VT\le\dfrac{1}{2}\left(\sqrt{y}+\sqrt{x}+\sqrt{z}\right)=\dfrac{1}{2}\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{9}\)
Biết \(x,y,z\) là các số thực dương. Tìm GTNN \(M=\dfrac{x^{14}-x^6+3}{x^2y^2+zx+zy}+\dfrac{y^{14}-y^6+3}{y^2z^2+xy+xz}+\dfrac{z^{14}-z^6+3}{z^2x^2+yz+yx}\)
11. xyz - xy - yz - zx + x + y + z - 1
12. xy(x + y) + yz(y + z) + zx(z + x) + 2xyz
13. xy(x + y) + yz(y + z) + zx(z + x) + 3xyz
giúp mik vs mik đang cần gấp =(((
13:
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
chứng minh rằng: (x-y)/(1+xy) + (y-z)/(1+yz) +(z-x)/(1+zx) = (x-y)(y-z)(z-x)/(1+xy)(1+yz)(1+zx)
Ta có:
\(\dfrac{x-y}{1+xy}\)+\(\dfrac{y-z}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) = \(\dfrac{x-y}{1+xy}\)+\(\dfrac{-\left(x-y\right)-\left(z-x\right)}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)
=\(\dfrac{x-y}{1+xy}\)\(-\dfrac{x-y}{1+yz}\) \(-\dfrac{z-x}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)
= \(\left(x-y\right)\)\(\left(\dfrac{\left(1+yz\right)-\left(1+xy\right)}{\left(1+yz\right)\left(1+xy\right)}\right)\)+(\(z-x\))\(\left(\dfrac{\left(1+yz\right)-\left(1+zx\right)}{\left(1+yz\right)\left(1+zx\right)}\right)\)
=\(\left(x-y\right)\)\(\dfrac{y\left(z-x\right)}{\left(1+yz\right)\left(1+xy\right)}\)+(\(z-x\))\(\dfrac{-z\left(x-y\right)}{\left(1+yz\right)\left(1+zx\right)}\)
=\(\left(\dfrac{\left(x-y\right)\left(z-x\right)}{1+yz}\right)\)\(\left(\dfrac{y\left(1+xz\right)-z\left(1+xy\right)}{\left(1+xz\right)\left(1+xy\right)}\right)\)
=đpcm
x+y+z=1 và x^2+y^2+z^2+xy+yz+zx=2/3 tính A=x/y+z +y/x+z + z/x+y
Lời giải:
Ta có:
$xy+yz+xz=(x+y+z)^2-(x^2+y^2+z^2+xy+yz+xz)=1-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow 3(xy+yz+xz)=1=(x+y+z)^2$
$\Leftrightarrow (x+y+z)^2-3(xy+yz+xz)=0$
$\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0$
$\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$
Vì $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$.
Do đó để tổng của chúng bằng $0$ thì $x-y=y-z=z-x=0$
$\Leftrightarrow x=y=z$
Khi đó:
$A=\frac{x}{x+x}+\frac{x}{x+x}+\frac{x}{x+x}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}$
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
ÁpdụngBđtCosixy+yz+zx≤(x+y+z)23=13Ta có:
2
x
y
+
y
z
+
z
x
+
2
2
(
x
y
+
y
z
+
z
x
)
+
2
x
2
+
y
2
+
z
2
≥
2
1
3
+
8
(
x
+
y
+
z
)
2
≥
14
(Đpcm)
Dấu "=" khi
x
=
y
=
z
=
1
3