Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm huy hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 13:42

a: Ta có: \(A=\left(2x+y\right)^2-\left(2x-y\right)^2\)

\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)

\(=4x\cdot2y=8xy\)

b: Ta có: \(B=\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(2y-1\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

Xuân Trà
Xem chi tiết
Mai Mai
Xem chi tiết
Tuyết Sương Channel
24 tháng 7 2017 lúc 1:20

H=(2x-y+10)+(4xy-8x^2-2y^2-4xy+10y+20x)+(4x-y)

H=(2x-y+10)+(4xy-16x-4y-4xy+10y+20x)+(4x-y)

H=(2x-y+10)+(4x+6y)+(4x-y)

H=2x-y+10+4x+6y+4x-y

H=10x+4y+10

Đỗ Thanh Huyền
Xem chi tiết
Trần Việt Linh
23 tháng 10 2016 lúc 10:35

\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)

\(=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+y^2+2xy\right)\)

\(=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)

Nguyễn Thị Thanh Hoà
Xem chi tiết
kudo shinichi
23 tháng 10 2018 lúc 14:06

\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)

\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)

\(A=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(A=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(A=\left(x+y\right).\left(x+y\right)^2\)

\(A=\left(x+y\right)^3\)

Chi Bùi
Xem chi tiết
HT.Phong (9A5)
29 tháng 7 2023 lúc 17:49

a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)

\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)

\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)

\(Q=\left(x-y-2x-4y\right)^2\)

\(Q=\left(-x-5y\right)^2\)

b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)

\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)

\(A=\left[\left(xy+2\right)-2\right]^3\)

\(A=\left(xy+2-2\right)^3\)

\(A=\left(xy\right)^3\)

\(A=x^3y^3\)

c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)

\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)

\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)

\(=0\)

Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 15:24

a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2

=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2

b: =(xy+2-2)^3=(xy)^3=x^3y^3

c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)

=24x+2x^3-2x^3-24x

=0

Cỏ dại
Xem chi tiết
Cỏ dại
Xem chi tiết
❤  Hoa ❤
14 tháng 12 2018 lúc 12:37

\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)

\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)

Bảo Châu Trần
Xem chi tiết
Đàm Tùng Vận
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 22:34

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

Lấp La Lấp Lánh
2 tháng 10 2021 lúc 22:34

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)

ducquang050607
2 tháng 10 2021 lúc 22:37

a; \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(2x^2-4xy+\dfrac{15}{4}y^2\)

b; \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(x^2-4x+4+x^2+6x+9-2x^2+2\)

\(2x+15\)