Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2018 lúc 18:08

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm

Hoang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 21:10

a: AC=căn 5^2-3^2=4cm

AH=3*4/5=2,4cm

BH=3^2/5=1,8cm

CH=5-1,8=3,2cm

b: \(BH=\sqrt{60^2:144}=5\left(cm\right)\)

BC=144+5=149cm

\(AB=\sqrt{5\cdot149}=\sqrt{745}\left(cm\right)\)

\(AC=\sqrt{144\cdot149}=12\sqrt{149}\left(cm\right)\)

c: \(HC=\sqrt{AC^2-AH^2}=\dfrac{144}{13}\left(cm\right)\)

\(BH=\dfrac{AH^2}{HC}=\dfrac{25}{13}cm\)

BC=BH+CH=13(cm)

AB=căn 13^2-12^2=5cm

Gia Huy
11 tháng 7 2023 lúc 21:26

a

Áo dụng đl pytago vào tam giác ABC vuông tại A:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

\(CH=BC-BH=5-1,8=3,2\left(cm\right)\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b

Áp dụng đl pytago vào tam giác AHC vuông tại H có:

\(AC=\sqrt{AH^2+HC^2}=\sqrt{60^2+144^2}=156\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A, đường cao AH có:

\(AC^2=HC.BC\Rightarrow BC=\dfrac{AC^2}{HC}=\dfrac{156^2}{144}=169\left(cm\right)\)

\(BH=BC-HC=169-144=25\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow AB=\sqrt{25.169}=65\left(cm\right)\)

c

Áp dụng đl pytago vào tam giác AHC vuông tại H:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{12^2-\left(\dfrac{60}{13}\right)^2}=\dfrac{144}{13}\approx11,08\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC đường cao AH có:

\(AH^2=HB.HC\Rightarrow HB=\dfrac{AH^2}{HC}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\dfrac{144}{13}}=\dfrac{25}{13}\approx1,92\left(cm\right)\)

\(BC=HB+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)

\(AB^2=HB.BC\Rightarrow AB=\sqrt{HB.HC}=\sqrt{\dfrac{144}{13}.\dfrac{25}{13}}=\dfrac{60}{13}\approx4,62\left(cm\right)\)

Thanh Thảo Thái Thị
Xem chi tiết
Thanh Thảo Thái Thị
20 tháng 9 2021 lúc 15:52

GIÚP mình thật đầy đủ nhất

Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 23:33

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

Thanh Thảo Thái Thị
22 tháng 9 2021 lúc 17:03

Bài 1?

thaonguyen
Xem chi tiết
Yoona SNSD
Xem chi tiết
Vũ Như Mai
23 tháng 1 2017 lúc 17:35

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

Vũ Như Mai
23 tháng 1 2017 lúc 17:38

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Jay Charles
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 21:30

\(CH=\dfrac{AH^2}{HB}=\dfrac{3.6^2}{2.7}=4.8\left(cm\right)\)

\(BC=4.8+2.7=7.5\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=\sqrt{2.7\cdot7.5}=4.5\left(cm\right)\)

AC=6(cm)

nongvietthinh
Xem chi tiết
Trương Phúc Uyên Phương
28 tháng 7 2015 lúc 11:32

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

Cao Linh Chi
13 tháng 2 2016 lúc 11:14

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

ko ten ko tuoi
5 tháng 3 2016 lúc 21:08

viet ba dao nhu the co ma lam dc!!! 

Hoàng Ngọc
Xem chi tiết
Akai Haruma
9 tháng 10 2021 lúc 9:17

Bài 1:

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)

$CH=BC-BH=10-3,6=6,4$ (cm)

Tiếp tục áp dụng HTL: 

$AH^2=BH.CH=3,6.6,4$

$\Rightarrow AH=4,8$ (cm)

$AC^2=CH.BC=6,4.10=64$

$\Rightarrow AC=8$ (cm)

Akai Haruma
9 tháng 10 2021 lúc 9:19

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)

$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)

Akai Haruma
9 tháng 10 2021 lúc 9:21

3. 

$BC=BH+CH=16a+9a=25a$

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH=16a.9a=(12a)^2$

$\Rightarrow AH=12a$ (do $a>0$)

$AB=\sqrt{BH^2+AH^2}=\sqrt{(16a)^2+(12a)^2}=20a$

$AC=\sqrt{CH^2+AH^2}=\sqrt{(9a)^2+(12a)^2}=15a$

 

TBQT
Xem chi tiết
Cô Hoàng Huyền
9 tháng 7 2018 lúc 15:26

Theo định lý Pi-ta-go thì \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ta có:

\(BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)

\(BH=\frac{12^2}{13}=\frac{144}{13}\left(cm\right)\)