Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nkjuiopmli Sv5
Xem chi tiết
Trần Ái Linh
17 tháng 7 2021 lúc 22:14

`2sin^2x+\sqrt3sin2x=3`

`<=>2. (1-cos2x)/2 + \sqrt3sin2x=3`

`<=>\sqrt3sin2x-cos2x=2`

`<=> \sqrt3/2 sin2x-1/2 cos2x=1`

`<=>sin (2x-π/6) = 1`

`<=> 2x-π/6=π/2+k2π`

`<=> x=π/3+kπ (k \in ZZ)`.

Nguyễn Việt Lâm
17 tháng 7 2021 lúc 22:12

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x=3\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

nguyễn thế minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2022 lúc 22:04

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}\cdot\cos2x+\dfrac{1}{2}\cdot\sin2x+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)

\(\Leftrightarrow2\cdot\dfrac{\sin\left(2x+\dfrac{\Pi}{3}+2x+\dfrac{\Pi}{6}\right)}{2}\cdot\dfrac{\cos\left(2x+\dfrac{\Pi}{3}-2x-\dfrac{\Pi}{6}\right)}{2}=\sqrt{2}\)

\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)\cdot\cos\left(\dfrac{\Pi}{6}\right)=2\sqrt{2}\)

\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)=\dfrac{4\sqrt{6}}{3}\)

hay \(x\in\varnothing\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:50

a/

Đặt \(x+\frac{\pi}{3}=a\Rightarrow x=a-\frac{\pi}{3}\)

Pt trở thành:

\(cos^2a+4cos\left(\frac{\pi}{6}-a+\frac{\pi}{3}\right)=4\)

\(\Leftrightarrow cos^2a+4cos\left(\frac{\pi}{2}-a\right)-4=0\)

\(\Leftrightarrow cos^2a+4sina-4=0\)

\(\Leftrightarrow1-sin^2a+4sina-4=0\)

\(\Leftrightarrow-sin^2a+4sina-3=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{3}\right)=1\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:54

b/

Đặt \(x+\frac{\pi}{6}=a\Rightarrow x=a-\frac{\pi}{6}\)

Pt trở thành:

\(5cos2a=4sin\left(\frac{5\pi}{6}-a+\frac{\pi}{6}\right)-9\)

\(\Leftrightarrow5cos2x=4sin\left(\pi-a\right)-9\)

\(\Leftrightarrow5\left(1-2sin^2a\right)=4sina-9\)

\(\Leftrightarrow10sin^2a+4sina-14=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=-\frac{7}{5}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 20:00

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)

Nyusu TegoKato
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2022 lúc 9:14

a: \(A=\sqrt{3}\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\dfrac{\sqrt{3}}{2}sinx-\dfrac{3}{2}cosx+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\sqrt{3}sinx-cosx\)

c: \(=2\left[\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right]+4sinx+1\)

\(=\sqrt{3}sin2x-cos2x+4sinx+1\)

d: \(D=\sqrt{3}cos2x+sin2x+2\cdot\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)

\(=\sqrt{3}\cdot cos2x+sin2x+\sqrt{3}\cdot sin2x-cos2x\)

\(=cos2x\left(\sqrt{3}-1\right)+sin2x\left(1+\sqrt{3}\right)\)

Nguyễn Sinh Hùng
Xem chi tiết
Mai Thanh Thái Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 23:09

a: =>sin2x+2*(1-cos2x)/2=2

=>sin2x-cos2x=1

=>căn 2*sin(2x-pi/4)=1

=>2x-pi/4=pi/4+k2pi hoặc 2x-pi/4=3/4pi+k2pi

=>x=pi/4+kpi hoặc x=pi/2+kpi

b: =>2*(1+cos2x)/2+1/2*sin2x-1/2(1-cos2x)=0

=>1+cos2x+1/2*sin2x-1/2+1/2cos2x=0

=>1/2*sin2x+3/2*cos2x=-1/2

=>sin(2x+a)=-cos(a)=cos(pi-a)

=>sin(2x+a)=sin(-pi/2+a)

=>2x+a=-pi/2+a+k2pi hoặc 2x+a=3/2pi-a+k2pi

=>x=-pi/4+kpi hoặc x=3/4pi-a+kpi

thị thanh xuân lưu
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:28

1.

Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?

2.

\(sin3x-4sinx.cos2x=0\)

\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)

\(\Leftrightarrow2sinx-sin3x=0\)

\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)

\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)

\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:33

3.

\(sin^2x.cosx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

4.

\(\sqrt{3}sin2x+1-cos2x=3\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:37

5.

Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)

6.

\(sinx+cosx-2sinx.cosx+1=0\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)

Pt trở thành:

\(t+1-t^2+1=0\)

\(\Leftrightarrow-t^2+t+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Nguyễn Hoàng Long
Xem chi tiết
lu nguyễn
Xem chi tiết