Cho x,y >0 và x+y =4xy.
C/m \(\frac{x}{4y^2+1}+\frac{y}{4x^2+1}\ge\frac{1}{2}\)
Ta có $P=\dfrac{x^2}{y-1}+ \frac{y^2}{x-1}$.
Áp dụng BĐT AM-GM ta có $1 \cdot (y-1) \le \frac{y^2}{4} \Rightarrow \frac{x^2}{y-1} \ge \frac{4x^2}{y^2}$.
Tương tự thì $\frac{y^2}{x-1} \ge \frac{4y^2}{x^2}$. Vậy $P \ge \dfrac{4x^2}{y^2}+ \frac{4y^2}{x^2} \ge 8$ theo BĐT AM-GM.
Dấu đẳng thức xảy ra khi và chỉ khi $x=y=2$. $\blacksquare$
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)
\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)
\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)
\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)
t chỉ làm dc đến đây thôi :))
Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:
\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)
Tương tự : \(y^2z+y^2z+z^2x\ge3yz\); \(z^2x+z^2x+x^2y\ge3zx\)
Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)
\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Dấu '=' xảy ra khi x = y = z = 1
Do xyz=1. nên bđt cần chứng minh tường đương với
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)
Theo BĐT Bunhiacopsky ta có:
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)
Do vậy ta cần cm
\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)
BĐT trên là tổng của 3 BĐT sau:
\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)
\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)
\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)
ta có bđt trên tương đương với
\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)
Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm
dấu "=" xảy ra khi x=y=z=1
a) cho x,y,z>0 sao cho xyz=1. CMR \(\frac{x^4y}{x^2+1}+\frac{y^4z}{^{y^2+1}}+\frac{z^4x}{^{z^2+1}}\ge\frac{3}{2}\)
b) cho a,b,c,d>0 sao cho a+b+c+d=4. CMR \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2d}\ge2\)
Cho x,y,z>0 và x+y+z=3
CMR:
\(\frac{1}{4x^2+y^2+z^2}+\frac{1}{4y^2+x^2+z^2}+\frac{1}{4z^2+x^2+y^2}\le\frac{1}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)
Khi đó \(\frac{1}{4x^2+y^2+z^2}=\frac{1}{3x^2+x^2+y^2+z^2}\le\frac{1}{3x^2+3}\)
Viết lại BĐT cần chứng minh như sau:
\(\frac{1}{3x^2+3}+\frac{1}{3y^2+3}+\frac{1}{3z^2+3}\le\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\le\frac{3}{2}\)
Ta có BĐT phụ \(\frac{1}{x^2+1}\le-\frac{1}{2}x+1\)
\(\Leftrightarrow-\frac{x\left(x-1\right)^2}{2\left(x^2+1\right)}\ge0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{y^2+1}\le-\frac{1}{2}y+1;\frac{1}{z^2+1}\le-\frac{1}{2}z+1\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le-\frac{1}{2}\left(x+y+z\right)+3=-\frac{3}{2}+3=\frac{3}{2}=VP\)
Xảy ra khi x=y=z=1
Cho mih hỏi bđt phụ đó là sao, có thể CM giùm mih đc hok
Xài BĐT Cauchy Schwarz ta dễ có:
\(\frac{9}{4x^2+y^2+z^2}=\frac{\left(x+y+z\right)^2}{2x^2+\left(x^2+y^2\right)+\left(x^2+z^2\right)}\le\frac{x^2}{2x^2}+\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\)
\(\Rightarrow\frac{9}{4x^2+y^2+z^2}\le\frac{1}{2}+\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\)
Tương tự:
\(\frac{9}{4y^2+z^2+x^2}\le\frac{1}{2}+\frac{x^2}{x^2+y^2}+\frac{z^2}{y^2+z^2};\frac{9}{4z^2+x^2+y^2}\le\frac{1}{2}+\frac{x^2}{x^2+z^2}+\frac{y^2}{y^2+z^2}\)
Cộng lại ta có được:
\(9LHS\le\frac{3}{2}+3=\frac{9}{2}\Rightarrow LHS\le\frac{1}{2}\) ( ĐPCM )
Câu 21:
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge x^4y^4+\frac{x^8y^8}{2}-1-2x^2y^2-x^4y^4=\left(x^2y^2-1\right)^2+\frac{1}{2}\left(x^4y^4-1\right)^2-\frac{5}{2}\ge-\frac{5}{2}.\)
Dấu = xảy ra khi x=y=1
Cho x, y, z là 3 số dương (chứng minh hộ mình phần b) thôi)
a) \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) \(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=12\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
CMR : \(\frac{1}{4x+y+z}+\frac{1}{x+4y+z}+\frac{1}{x+y+4z}\le\frac{1}{6}\)
thế nào nhỉ ( :
Từ giả thiết => 1/x +1/y +1/z <= 1
A/d BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z ) và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x) + 1/4(1/y +1/x) + 1/4(1/x + 1/z))
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.
Cho các số thực x,y thỏa mãn x+y\(\ge\)4.Chứng minh
A=\(\frac{3x^2+4}{4x}\)+\(\frac{3y^2+2}{4y}\)\(\ge\)4
Lời giải:
Áp dụng BĐT Cô-si:
\(A=\frac{3}{4}x+\frac{1}{x}+\frac{3}{4}y+\frac{1}{y}=\frac{1}{2}(x+y)+(\frac{x}{4}+\frac{1}{x})+(\frac{y}{4}+\frac{1}{y})\)
\(\geq \frac{1}{2}.4+2\sqrt{\frac{x}{4}.\frac{1}{x}}+2\sqrt{\frac{y}{4}.\frac{1}{y}}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=2$
Cho x;y;z > 0 thỏa mãn x + y + z = 2
Tìm GTNN của \(P=\sqrt{4x^2+\frac{1}{x^2}}+\sqrt{4y^2+\frac{1}{y^2}}+\sqrt{4z^2+\frac{1}{z^2}}\)
1, Tìm giá trị lớn nhất của biểu thức : \(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
2, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn : \(2x^2+y^2+4x=4+2xy\)
3, Cho x,y,z >0 . Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
1/ ĐKXĐ: \(x\ge1;y\ge4\)
\(M=\frac{1\sqrt{x-1}}{x}+\frac{2.\sqrt{y-4}}{2y}\le\frac{1+x-1}{2x}+\frac{4+y-4}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
\(M_{max}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-4}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=8\end{matrix}\right.\)
2/ \(\Leftrightarrow x^2-2xy+y^2+x^2+4x+4=8\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+2\right)^2=8=2^2+2^2\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=4\\\left(x+2\right)^2=4\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\frac{x^2}{y^2}+1\ge2\sqrt{\frac{x^2}{y^2}}=\frac{2x}{y}\)
Tương tự: \(\frac{y^2}{z^2}+1\ge\frac{2y}{z}\) ; \(\frac{z^2}{x^2}+1\ge\frac{2z}{x}\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\sqrt{\frac{xyz}{xyz}}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Dấu "=" xảy ra khi \(x=y=z\)