Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyen
Xem chi tiết
Akai Haruma
5 tháng 10 2017 lúc 1:26

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)

Nguyen Tuan Dat
Xem chi tiết
A B C
Xem chi tiết
Tuyết Loan Nguyễn Thị
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Hoàng Thị Ngọc Mai
25 tháng 7 2017 lúc 17:02

1)

\(7.5^{2n}+12.6^n\)

\(=7.25^n+12.25^n-12.25^n+12.6^n\)

\(=19.25^n-12.\left(25^n-6^n\right)\)

Ta có: 19.25n \(⋮\) 19

Vì 25n - 6n \(⋮\) 25 - 6

=> 25n - 6n \(⋮\) 19

Do đó : \(19.25^n-12.\left(25^n-6^n\right)\) \(⋮\) 19

=> \(7.5^{2n}+12.6^n\) \(⋮\) 19

2)

\(11^{n+2}+12^{2n+1}\)

\(=11^n.121+144^n.12\)

\(=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+12.\left(144^n-11^n\right)\)

Ta có: 11n .133 \(⋮\) 133

Vì 144n - 11n \(⋮\) 144 - 11

=> 144n - 11n \(⋮\) 133

Do đó : \(11^n.133+12.\left(144^n-11^n\right)\) \(⋮\) 133

=> \(11^{n+2}+12^{2n+1}\) \(⋮\) 133

Diệu Anh Hoàng
Xem chi tiết
Tớ Đông Đặc ATSM
3 tháng 9 2018 lúc 1:29

a,  11n+2+122n+1

= 11n.121+12.122n

= 11n.(133-12)+12.122n

= 11n.133-11nn .12+12.122n

=12.(144n-11n)+11n. 133

Có 144nn-11n \(⋮\)144-11=133

11n.133\(⋮\)133

=> dpcm

hfghd
Xem chi tiết
không cần tên
Xem chi tiết
Nữ Thần Mặt Trăng
30 tháng 11 2017 lúc 17:33

1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!

mynguyenpk
Xem chi tiết