Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thắng Phúc
Xem chi tiết
Nguyễn Thắng Phúc
12 tháng 11 2017 lúc 13:43

Theo bài có : \(\sqrt{ab}=\frac{a+b}{a-b}\)        (1)             nên suy ra : \(\frac{a+b}{a-b}\ge0\)

Mà a+b > 0 do a,b là số thực dương nên suy ra : a-b > 0 hay a > b

Có : \(\sqrt{ab}=\frac{a+b}{a-b}\) 

\(\Leftrightarrow\)ab = \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}\)=\(\frac{\left(a-b\right)^2+4ab}{\left(a-b\right)^2}\)\(1+\frac{4ab}{\left(a-b\right)^2}\)

Ta có : P = ab + \(\frac{a-b}{\sqrt{ab}}\)=  \(1+\frac{4ab}{\left(a-b\right)^2}\) + \(\frac{a-b}{2\sqrt{ab}}\)\(\frac{a-b}{2\sqrt{ab}}\) \(\ge\)4\(\sqrt[4]{1.\frac{4ab}{\left(a-b\right)^2}.\frac{a-b}{2\sqrt{ab}}.\frac{a-b}{2\sqrt{ab}}}\)= 4\(\sqrt[4]{1}\)= 4 ( theo BĐT Cô -si)

Dấu  " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{a-b}{2\sqrt{ab}}=1\\\frac{a-b}{2\sqrt{ab}}=\frac{4ab}{\left(a-b\right)^2}\\\frac{4ab}{\left(a-b\right)^2}=1\end{cases}}\) \(\Leftrightarrow a=b.\left(\sqrt{2}+1\right)^2\)

Thay  a = b.\(\left(\sqrt{2}+1\right)^2\)vào (1)  rồi tính ra ta được :\(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\left(thỏamãn\right)\)

Vậy P min = 4 đạt được khi \(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\) 

Công Hồ Trung
Xem chi tiết
Vũ Phương Hoa
26 tháng 11 2015 lúc 16:09

AD bất đẳng thức cô si ta được:\(a^2+b^2\ge2ab\Rightarrow ab\le\frac{a^2+b^2}{2}=2\)                                                 AD bất đẳng thức bunhiacopxki ta được:\(\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1^2+1^2\right)=4.2=8\Rightarrow\left(a+b\right)\le2\sqrt{2}\)                                       \(\Rightarrow\frac{ab}{a+b+2}\le\frac{2}{2\sqrt{2}+1}=\frac{1}{\sqrt{2}+1}\)                                                                                                    dấu "=" xảy ra khi và chỉ khi a=b=1

VƯƠNG TRÀ MY
Xem chi tiết
Nguyễn Khánh Duy
12 tháng 9 2021 lúc 15:33

bài khó thế

Khách vãng lai đã xóa
D.S Gaming
Xem chi tiết
fan FA
Xem chi tiết
Nguyễn Hưng Phát
30 tháng 1 2019 lúc 20:51

1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)

\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)

\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)

2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)

\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)

\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

b,sai đề

Phạm Tuấn Đạt
30 tháng 1 2019 lúc 20:53

Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)

\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)

\(T\ge20.20^2-6.100=7400\)

pham trung thanh
31 tháng 1 2019 lúc 11:10

b. \(1=\left(a+2b\right)^2\ge4.a.2b=8ab\)

\(\Rightarrow ab\le\frac{1}{8}\)

Dấu = xảy ra khi \(a=\frac{1}{2}\);\(b=\frac{1}{8}\)

Thiên An
Xem chi tiết
Chibi
25 tháng 4 2017 lúc 16:23

P = ab + \(\frac{a-b}{\sqrt{ab}}\)

Thay a - b = \(\frac{a+b}{\sqrt{ab}}\)vào P

=> P = ab + \(\frac{a+b}{\sqrt{ab}\sqrt{ab}}\)

= ab + \(\frac{a+b}{ab}\)>= 2\(\sqrt{a+b}\)

Làm tiếp cứ đi vòng vòng mà không có lối ra.

Hoàng Phúc
24 tháng 4 2017 lúc 21:48

đề tuyển sinh VT năm nào gần đây thì phải

alibaba nguyễn
25 tháng 4 2017 lúc 9:52

Linh hoạt biến đổi xíu sẽ ra thôi mà.

Phan Văn Hiếu
Xem chi tiết
Nguyễn Thiều Công Thành
17 tháng 9 2017 lúc 22:34

ta có:

\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)

tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

áp dụng bđt cô si ta có:

\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)

Lê Minh Đức
Xem chi tiết
Triệu Tuyên Nhâm
16 tháng 5 2017 lúc 21:41

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

vuthithu2002
Xem chi tiết