\(4sin^22x+8cos^2x-\frac{19}{3}=0\)
Giải các phương trình lượng giác sau:
1) a/ \(cos\left(10x+12\right)+4\sqrt{2}sin\left(5x+6\right)-4=0\)
b/ \(cos\left(4x+2\right)+3sin\left(2x+1\right)=2\)
2) a/ \(cos2x+sin^2x+2cosx+1=0\)
b/ \(4sin^22x-8cos^2x+ 3=0\)
c/ \(4cos2x+4sin^2x+4sinx=1\)
3) a/ \(tanx+cotx=2\)
b/ \(2tanx-2cotx=3\)
4) a/ \(2sin2x+8tanx=9\sqrt{3}\)
b/ \(2cos2x+tan^2x=5\)
5) a/ \(\left(3+cotx\right)^2=5\left(3+cotx\right)\)
b/ \(4\left(sin^2x+\dfrac{1}{sin^2x}\right)-4\left(sinx+\dfrac{1}{sinx}\right)=7\)
1a.
Đặt \(5x+6=u\)
\(cos2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
1b.
Đặt \(2x+1=u\)
\(cos2u+3sinu=2\)
\(\Leftrightarrow1-2sin^2u+3sinu=2\)
\(\Leftrightarrow2sin^2u-3sinu+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)
2a.
\(cos^2x-sin^2x+sin^2x+2cosx+1=0\)
\(\Leftrightarrow cos^2x+2cosx+1=0\)
\(\Leftrightarrow\left(cosx+1\right)^2=0\)
\(\Leftrightarrow cosx=-1\)
\(\Leftrightarrow x=\pi+k2\pi\)
\(\frac{sin^22x-4sin^2x}{sin^22x+4sin^2x-4}=tan^4x\)
\(\frac{sin^22x-4sin^2x}{sin^22x+4sin^2x-4}=\frac{4sin^2x.cos^2x-4sin^2x}{4sin^2x.cos^2x+4\left(sin^2x-1\right)}\)
\(=\frac{4sin^2x\left(cos^2x-1\right)}{4sin^2x.cos^2x-4cos^2x}=\frac{-4sin^4x}{4cos^2x\left(sin^2x-1\right)}=\frac{sin^4x}{cos^4x}=tan^4x\)
Chứng minh
a) \(\frac{sin^22x+4sin^2x-4}{1-8sin^2x-cos4x}=\frac{1}{2}cot^4x\)
b) \(\frac{cos2x}{cot^2x-tan^2x}=\frac{1}{4}sin^22x\)
\(\frac{sin^22x+4sin^2x-4}{1-8sin^2x-cos4x}=\frac{4sin^2x.cos^2x-4\left(1-sin^2x\right)}{1-8sin^2x-\left(1-2sin^22x\right)}=\frac{4sin^2x.cos^2x-4cos^2x}{2sin^22x-8sin^2x}\)
\(=\frac{-4cos^2x\left(1-sin^2x\right)}{8sin^2x.cos^2x-8sin^2x}=\frac{-4cos^2x.cos^2x}{-8sin^2x\left(1-cos^2x\right)}=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)
\(\frac{cos2x}{cot^2x-tan^2x}=\frac{cos2x.sin^2x.cos^2x}{cos^4x-sin^4x}=\frac{\left(cos^2x-sin^2x\right).\left(2sinx.cosx\right)^2}{4\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)}=\frac{1}{4}sin^22x\)
33, giai pt
\(\frac{4sin^22x+6sin^2x-9-3cos2x}{cosx}\)
a)\(4sin^3xcos3x+4cos^3xsin3x+3\sqrt{3}cos4x=3\)
b)\(2sin^2x\left(4sin^4x-1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)
2 câu này giải như nào ạ
a
\(\Leftrightarrow\left(3sinx-sin3x\right)cos3x+\left(3cosx+cos3x\right)sin3x+3\sqrt{3}cos4x=3\)
\(\Leftrightarrow\left(sinx.cos3x+sin3x.cosx\right)+\sqrt{3}cos4x=1\)
\(\Leftrightarrow sin4x+\sqrt{3}cos4x=1\)
Tới đây thôi, mình lười ghi rồi =))
b
\(\Leftrightarrow\left(1-cos2x\right)\left(2sin^2x-1\right)\left(2sin^2+1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)
\(\Leftrightarrow\left(1-cos2x\right)\left(-cos2x\right)\left(2-cos2x\right)=cos2x\left(7cos^22x+3cos2x+4\right)\)
\(\Leftrightarrow-cos^22x+3cos2x-2=7cos^22x+3cos2x+4\)
\(\Leftrightarrow4cos^22x+3=0\)
=> pt vô nghiệm
Tìm m để phương trình sau có nghiệm :
a) 8cos2\(\frac{x}{2}\)+4sin2x-5-3m=0
\(4\left(cosx+1\right)+4\left(1-cos^2x\right)-5-3m=0\)
\(\Leftrightarrow-4cos^2x+4cosx+3=3m\)
Đặt \(f\left(x\right)=-4cos^2x+4cosx+3\)
\(f\left(x\right)=-\left(2cosx-1\right)^2+4\le4\)
\(f\left(x\right)=-4cos^2x+4cosx+8-5=4\left(cosx+1\right)\left(2-cosx\right)-5\ge-5\)
\(\Rightarrow-5\le f\left(x\right)\le4\)
\(\Rightarrow-5\le3m\le4\Rightarrow-\frac{5}{3}\le m\le\frac{4}{3}\)
giải pt \(2cos3x.cosx-4sin^22x+1=0\)
\(\Leftrightarrow cos4x+cos2x-4sin^22x+1=0\)
\(\Leftrightarrow2cos^22x+1+cos2x-4\left(1-cos^22x\right)+1=0\)
\(\Leftrightarrow6cos^22x+cos2x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Phương trình : \(4sin^22x-3sin2x.cos2x-cos^22x=0\) có bao nhiêu nghiệm trong khoảng \(\left(0;\pi\right)\) ?
Lời giải:
PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$
$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$
Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$
$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên
Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$
Nếu $4\sin 2x+\cos 2x=0$
$\Rightarrow \tan 2x=\frac{-1}{4}$
$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vậy có $4$ nghiệm thỏa mãn.
Lời giải:
PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$
$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$
Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$
$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên
Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$
Nếu $4\sin 2x+\cos 2x=0$
$\Rightarrow \tan 2x=\frac{-1}{4}$
$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vậy có $4$ nghiệm thỏa mãn.
Giải phương trình
1: 4sin2x + 8cos2x - 9 = 0
2: 1-5sinx + 2cos2x = 0
1. 4sin2x + 8cos2x-9=0
⇔ 4(sin2x+cos2x) + 4cos2x = 9
⇔ cos2x= \(\frac{9}{4}\)
⇔ cosx= \(\left[{}\begin{matrix}cosx=\frac{3}{2}\left(KTM\right)\\cosx=\frac{-3}{2}\left(KTM\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
2.
1-5sinx + 2cos2x=0
⇔1- 5sinx + 2(1-sin2x)=0
⇔ 2sin2x + 5sinx -3 =0
⇔\(\left[{}\begin{matrix}sinx=0,5\\sinx=-3\left(ktm\right)\end{matrix}\right.\)
Có sinx=0,5
⇔x=\(\left[{}\begin{matrix}x=\frac{\pi}{6}+2k\pi\\\frac{5\pi}{6}+2k\pi\end{matrix}\right.\left(k\in z\right)\)
Bạn sửa lại giúp mình câu 2 chỗ x đó là dấu ngoặc nhọn nhé, không phải dấu ngoặc vuông. Mình bị nhầm.