Cho x > 0 , y > 0 và ( x + 2 ) . ( y + 2 ) = 9 .Tìm min S = x + y
cho x>0 , y>0 và (x+2).(y+2)=9 .Tìm min S =x+y
ta có: S = x+y
=> S=( x+2)+(y+2) - 4
AD BDDT cô-si ta có: \(\left(x+2\right)+\left(y+2\right)\ge2\sqrt{\left(x+2\right).\left(y+2\right)}=2.3=6\)
=> \(S\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=y+2\\\left(x+2\right).\left(y+2\right)=9\end{cases}\Leftrightarrow x=y=1}\)( TM đk x>0; y>0)
KL: MinS = 2 tại x=y=1
cho x>0 y>0 và x^2 +y^2=1. Tìm min của
S= (1+x)*(1+y)*(1+1/y)*(1+1/x)
x>0 y>0 x+y=4
tìm min E cho x>0 y>0 và x+y=4 tìm min E= (x+1/x)^2 +(y+1/y)^2 +2018
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
cho x,y>0 và 4/x^2 + 5/y^2 > 9. tìm min K= 2x^2 + 6/x^2 + 3y^2 + 8/y^2
cho x và y>0 và x+y=xy tìm min S=x+y
Áp dụng bất đẳng thức cosi ta có:
`x+y>=2\sqrt{xy}`
Mà `x+y=xy`
`=>xy>=2\sqrt{xy}`
`x,y>0=>xy>0` chia hai vế cho `2sqrt{xy}>0` ta có:
`\sqrt{xy}>=2`
`<=>xy>=4`
`=>S>=4`
Dấu "=" xảy ra khi `x=y=2`
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Cho x,y,z>0 và x+y+z=xyz.
Tìm Min \(S=\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\)