Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nhật Giang
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
btkho
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 0:05

\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)

\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)

Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)

Ta có: \(b^3+2-b\ge3b-b=2b>0\)

\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)

\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)

\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)

Vũ Thảo Vy
Xem chi tiết
Incursion_03
30 tháng 4 2019 lúc 22:28

*\(a^3+b^3=2\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\)

Vì \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)

Nên a + b > 0

*Vì a + b > 0

\(\Rightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow4.2\ge\left(a+b\right)^3\)

\(\Leftrightarrow2\ge a+b\)

Vậy .....

TRẦN ĐỨC VINH
30 tháng 4 2019 lúc 23:22

\(a^3+b^3=2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\Leftrightarrow\left(a+b\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]=2.\) 

Suy ra  :  a+b > 0  

Ship Mều Móm Babie
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Nguyễn Minh Tuyền
Xem chi tiết
nguyễn kim thương
11 tháng 5 2017 lúc 12:12

Bài 2: 

  Đặt   \(a=3+x\)và   \(b=3+y\)thì    \(x,y\ge0\). Ta có :  \(a+b=6+\left(x+y\right)\).

Ta cần chứng minh   \(x+y\ge1\)

Ví dụ   \(x+y< 1\)thì  \(x^2+2xy+y^2< 1\)nên \(x^2+y^2< 1\)

\(\Leftrightarrow a^2+b^2=\left(x+3\right)^2+\left(y+3\right)^2=18+6\left(x+y\right)+\left(x^2+y^2\right)< 18+6+1=25\)

Điều này ngược với  giả thiết ở đề bài   \(ầ^2+b^2\ge25\)

Vậy \(x+y\ge1\)\(\Leftrightarrow a+b\ge7\left(dpcm\right)\)

tk mk nka !!!

Siêu Nhân Lê
Xem chi tiết
T.Thùy Ninh
15 tháng 6 2017 lúc 16:18

\(0\le a\le2;0\le b\le2;0\le c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\ge4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)

\(\Rightarrow\)\(2\left(ab+bc+ca\right)\ge4\)

\(\Leftrightarrow-2\left(ab+bc+ca\right)\le-4\)

Ta có :

\(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\Rightarrowđpcm\)Đẳng thức xảy ra khi

\(\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\)

\(\left[{}\begin{matrix}2-a=0\\2-b=0\\2-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

Lại Minh Sang
Xem chi tiết