\(x^2-mx+2\left(m-2\right)=0\)
tìm m để pt có 2ng x1;x2 thỏa mãn \(2x_1+3x_2=5\)
cho pt: x^2-(m-1)x-m^2+m-2=0 tìm m để pt có 2ng pb .
tìm M để Q=\(\left(\dfrac{x1}{x2}\right)^3\)-\(\left(\dfrac{x2}{x1}\right)^3\) lớn nhất
tìm m để \(x^3+3x^2+\left(1-m\right)x+1\ge0\) ( mọi x >=0)
tìm m để pt có 2ng phân biệt \(\sqrt{x^2+mx+2}=2x+1\)
a.
\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)
- Với \(x=0\) thỏa mãn
- Với \(x>0\)
(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)
\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)
Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)
\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)
Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)
\(\Rightarrow m\le\dfrac{19}{4}\)
b.
Bài toán thỏa mãn khi:
\(x^2+mx+2=\left(2x+1\right)^2\Leftrightarrow3x^2-\left(m-4\right)x-1=0\) (1) có 2 nghiệm pb thỏa mãn \(-\dfrac{1}{2}\le x_1< x_2\) (2)
Do \(ac=-3< 0\) nên (1) luôn có 2 nghiệm pb
Để 2 nghiệm của (1) thỏa mãn (2) thì:
\(\left\{{}\begin{matrix}\left(x_1+\dfrac{1}{2}\right)\left(x_2+\dfrac{1}{2}\right)\ge0\\\dfrac{x_1+x_2}{2}>-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+\dfrac{1}{2}\left(x_1+x_2\right)+\dfrac{1}{4}\ge0\\x_1+x_2>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}+\dfrac{m-4}{6}+\dfrac{1}{4}\ge0\\\dfrac{m-4}{3}>-1\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{9}{2}\)
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
Cho pt \(mx^2+\left(2m+5\right)x+m-1=0\)
Tìm m để pt có 2 nghiệm \(x_1,x_2\) thoả \(2\left(x_1+x_2\right)=3x_1x_2\)
\(\Delta=\left(2m+5\right)^2-4\left(m-1\right)=4m^2+16m+29=4\left(m+2\right)^2+13>0;\forall m\)
\(\Rightarrow\) Phương trình có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m-5\\x_1x_2=m-1\end{matrix}\right.\)
Ta có: \(2\left(x_1+x_2\right)=3x_1x_2\)
\(\Leftrightarrow2\left(-2m-5\right)=3\left(m-1\right)\)
\(\Leftrightarrow7m=-7\)
\(\Leftrightarrow m=-1\)
1. Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=\)3-9x
2. Cho phương trình \(mx^2-2\left(m-1\right)x+2=0\) (*)
a. Xác định các hệ số. Điều kiện để (*) là PT bậc 2
b. Giải PT khi m=1
c. Tìm m để PT có nghiệm kép.
3. Cho PT \(x^2-2\left(a-2\right)x+2a+3=0\)
a. Giải PT với a=-1
b. Tìm a để PT có nghiệm kép
4. Cho PT \(x^2-mx+m-1=0\) (ẩn x, tham số m)
a. Giải PT khi m=3
b. Chứng tỏ PT có 2 nghiệm x1, x2 với mọi m
c. Đặt A=\(x_{1^2}+x_{2^2}-6x_1x_2\) . Tính giá trị nhỏ nhất của A
5. Cho PT \(x^2+2mx-2m^2=0\). Tìm m để PT có 2 nghiệm x1, x2 thỏa mãn điều kiện x1+x2 = x1.x2
Tìm m để phương trình: \(mx^2-2\left(m+1\right)x+m+5=0\) có 2 nghiệm x1,x2 thỏa mãn x1<0<x2<2
Lời giải:
Để pt có 2 nghiệm thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)
Áp dụng định lý Viet:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)
Để $x_1< 0< x_2$
$\Leftrightarrow x_1x_2< 0$
$\Leftrightarrow \frac{m+5}{m}< 0$
$\Leftrightarrow -5< m< 0(2)$
$x_1< x_2< 2$
\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)
Từ $(1);(2);(3)$ suy ra $-5< m< -1$
a, cho pt : \(2x^2+\left(2m-1\right)x+m-1=0\)
TÌm hệ thức giữa 2 nghiệm x1; x2 ko phụ thuộc vào tham số m
b, cho pt: \(\left(m+2\right)x^2-2\left(m+1\right)x+m-4=0\) \(\left(m\ne-2\right)\)
tìm m để pt có 2 nghiệm trái dấu trong đó nghiệm dương có giá trị tuyệt đối lớn hơn.
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
tìm m để 2 pt sau tương đương
\(x^2+x+m=0\left(1\right)\)
\(x^2+mx+1=0\left(2\right)\)
\(\left(1\right)\Leftrightarrow m=-x^2-x\)
Thay vào (2)
\(\left(2\right)\Leftrightarrow x^2-\left(x^2+x\right)x+1=0\\ \Leftrightarrow1-x^3=0\\ \Leftrightarrow\left(1-x\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow x=1\left(x^2+x+1>0\right)\\ \Leftrightarrow m=-1-1=-2\)