GIẢI PHƯƠNG TRÌNH SAU /x-1/+/x-2/=3x+1
1.Giải các phương trình sau : a,7x+35=0 b, 8-x/x-7 -8 =1/x-7 2.giải bất phương trình sau : 18-3x(1-x)_< 3x^2-3x
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
1.
\(a,7x+35=0\\ \Rightarrow7x=-35\\ \Rightarrow x=-5\\ b,ĐKXĐ:x\ne7\\ \dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\\ \Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{8\left(x-7\right)}{x-7}-\dfrac{1}{x-7}=0\\ \Leftrightarrow\dfrac{8-x-8x+56-1}{x-7}=0\\ \Rightarrow-9x+63=0\\ \Leftrightarrow-9x=-63\\ \Leftrightarrow x=7\left(ktm\right)\)
2.đề thiếu
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải phương trình sau:
(3x / x^2 - x + 3) - (2x / x^2 - 3x + 3) = -1
=>\(\dfrac{3x^3-9x^2+9x-2x^3+2x^2-6x}{\left(x^2-3x+3\right)\left(x^2-x+3\right)}=-1\)
=>x^3-7x^2+3x=-[(x^2+3)^2-4x(x^2+3)+3x^2]
=>x^3-7x^2+3x+(x^2+3)^2-4x(x^2+3)+3x^2=0
=>x^3-4x^2+3x+x^4+6x^2+9-4x^3-12x=0
=>x^4-3x^3+2x^2-9x+9=0
=>(x-3)(x-1)(x^2+x+3)=0
=>x=3;x=1
Giải phương trình sau:
2/2+1-1/x-2=3x+5/(x+1)(x+2)
Bạn gõ Latex để mọi người hiểu đề dễ hơn nhà =))
đk : x khác -1 ; -2
sửa đề \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x+5}{\left(x+1\right)\left(x+2\right)}\)
\(\Rightarrow2x-4-x-1=3x+5\Leftrightarrow x-5=3x+5\Leftrightarrow2x+10=0\Leftrightarrow x=-5\left(tm\right)\)
giải phương trình sau
1/ ( x-3) ^2 =16
2/ (3x-1)^3 =8
3/ (x-11)^3 =-27
4/ x^3 -3x^2 +3x-1'
1/ ( x-3) 2=16
\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
2/ (3x-1)3=8
\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)
3/ (x-11)3=-27
\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)
phần 4 mình ko rõ đề
4) \(x^3-3x^2+3x-1=-64\)
\(\Rightarrow x^3-3x^2+3x+63=0\\ \Rightarrow\left(x^3+3x^2\right)-\left(6x^2+18x\right)+\left(21x+63\right)=0\\ \Rightarrow x^2\left(x+3\right)+6x\left(x+3\right)+21\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x^2+6x+21\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x^2+6x+21=0\end{matrix}\right.\)
\(x+3=0\\ \Rightarrow x=-3\)
\(x^2+6x+21=0\\ \Rightarrow\left(x^2+6x+9\right)+12=0\\ \Rightarrow\left(x+3\right)^2+12=0\)
Vì \(\left(x+3\right)^2\ge0;12>0\Rightarrow\left(x+3\right)^2+12>0\Rightarrow x^2+6x+21vônghiệm\)
Vậy \(x=-3\)
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
GIẢI PHƯƠNG TRÌNH SAU; /x-1/+/x-2/=3x+1
Nếu \(x< 1\)thì phương trình trở thành : \(-x+1-x+2=3x+1\)
\(\Leftrightarrow-2x+3=3x+1\Leftrightarrow-5x+2=0\Leftrightarrow x=\frac{2}{5}\)
Nếu : \(x>2\)thì phương trình trở thành :\(x-1+x-2=3x+1\Leftrightarrow2x-3-3x-1=0\)
\(\Leftrightarrow-x-4=0\Leftrightarrow x=-4\)
Nếu : \(1\le x\le2\)thì phương trình trở thành : \(x-1-x+2=3x+1\Leftrightarrow x=0\)
giải phương trình sau :
\(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
\(ĐK:-1\le x< 0;x\ge1\\ PT\Leftrightarrow x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\\ \Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=a\ge0\)
\(PT\Leftrightarrow a^2+2a-3=0\\ \Leftrightarrow\left(a-1\right)\left(a+3\right)=0\\ \Leftrightarrow a=1\left(a\ge0\right)\\ \Leftrightarrow x-\dfrac{1}{x}=1\\ \Leftrightarrow x^2-x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\end{matrix}\right.\)
Giải các phương trình sau: 1). x^3 - 3x^2 + 2x =0 2). x^2−x−1/x+1 =2x-1
1) Ta có: \(x^3-3x^2+2x=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
Vậy: S={0;1;2}
2) Ta có: \(\dfrac{x^2-x-1}{x+1}=2x-1\)
\(\Leftrightarrow x^2-x-1=\left(2x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^2-x-1=2x^2+2x-x-1\)
\(\Leftrightarrow x^2-x-1-2x^2-x+1=0\)
\(\Leftrightarrow-x^2-2x=0\)
\(\Leftrightarrow-x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: S={0;-2}
3x2+2x=0
<=>x(3x+2)=0
<=>x=0 hoặc 3x+2=0
từ đó bạn giải ra x thuộc{0;-2/3}
chúc bạn học tốt và nhớ tích đúng cho mình