Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
abc
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 10 2019 lúc 22:46

c,C= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\left(x\ge1\right)\)

=\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

=\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\) (1)

TH1: \(\sqrt{x-1}< 1\) hay \(1\le x< 2\)

Từ (1)=>C= \(\sqrt{x-1}+1+1-\sqrt{x-1}\)=2

TH2: \(\sqrt{x-1}\ge1\) hay \(x\ge2\)

Từ (1) =>C=\(\sqrt{x-1}+1+\sqrt{x-1}-1\)=\(2\sqrt{x-1}\)

d, D=\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{13+30\sqrt{2}+\sqrt{8+2\sqrt{8}+1}}=\sqrt{13+30\sqrt{2}+\sqrt{\left(\sqrt{8}+1\right)^2}}\)

=\(\sqrt{13+30\sqrt{2}+\sqrt{8}+1}=\sqrt{14+30\sqrt{2}+2\sqrt{2}}\)

=\(\sqrt{14+32\sqrt{2}}\)

ta thi ngoc anh
8 tháng 10 2019 lúc 20:55

a)\(\frac{x-y}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

b)\(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

Đinh Doãn Nam
Xem chi tiết
Nguyễn Phương Oanh
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 10 2019 lúc 16:22

\(P=\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{2}{\sqrt{x}-1}\)

\(=\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\frac{2}{\sqrt{x}-1}\right)\)

\(=\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\frac{2}{x+\sqrt{x}+1}\)

Do \(x+\sqrt{x}+1=x+\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow P=\frac{2}{x+\sqrt{x}+1}>0\)

abc
Xem chi tiết
abc
12 tháng 11 2019 lúc 12:58

Giúp mình với!!!

Khách vãng lai đã xóa
Phạm Lan Hương
12 tháng 11 2019 lúc 13:03

Hỏi đáp Toán

Khách vãng lai đã xóa
trinh mai
Xem chi tiết
dao ha
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết
Hoàng Tử Hà
28 tháng 6 2019 lúc 16:07

Sửa đề nha: \(\sqrt{x^3-1}\) thành \(\sqrt{x^3}-1\)

\(B=\left(\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(B=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)

\(B=\frac{\left(x+\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b/ Để B= 3\(\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=16\)

Tdq_S.Coups
Xem chi tiết
Mai Linh
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 8 2019 lúc 12:19

a, \(A=\sqrt{\left(1-x\right)^2}-1=\left|1-x\right|-1=1-x-1\)(vì x<1)

<=> A=\(-x\)

b,B=\(\frac{3-\sqrt{x}}{x-9}\left(x\ge0,x\ne9\right)\)

=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

Vậy \(B=-\frac{1}{\sqrt{x}+3}\)

c, C=\(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}\left(x\ge0,x\ne9\right)\)

=\(\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\sqrt{x}-2\)

Vậy C= \(\sqrt{x}-2\)

d, D=\(5-3x-\sqrt{25-10x+x^2}\left(x< 5\right)\)

= \(5-3x-\sqrt{\left(5-x\right)^2}\)=\(5-3x-\left|5-x\right|\)=\(5-3x-5+x\) (vì x<5)=-2x

Vậy D=-2x

e, E=\(\sqrt{3a}.\sqrt{27a}\) (đk \(a\ge0\))

=\(\sqrt{3.27.a^2}=\sqrt{3^4}.a=9a\)

Vậy E=9a

f, F=\(\frac{1}{a-1}\sqrt{9\left(a-1\right)^2}\) (đk :a>1)

= \(\frac{1}{a-1}.3\left|a-1\right|\)=\(\frac{1}{a-1}.3\left(a-1\right)\) (vì a>1)=3

Vậy F=3