Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Thư
Xem chi tiết
Bùi Văn Minh
Xem chi tiết
Bùi Văn Minh
5 tháng 2 2015 lúc 19:47

mình bieetslaf đúng nhưng cac pạn chỉ cho mình cách làm đc ko?mai mình phải nộp bài rồi

Nguyễn Tiến Thành
Xem chi tiết
Xyz OLM
16 tháng 5 2020 lúc 20:53

Ta có : \(\frac{1}{m}+\frac{1}{n}=\frac{1}{7}\Rightarrow\frac{m+n}{mn}=\frac{1}{7}\Rightarrow7m+7n=mn\)

=> 7m + 7n - mn = 0

=> m(7 - n)  + 7n - 49 = -49

=> m(7 - n)  -7(7 - n) = - 49

=> (m - 7)(7 - n) = - 49

Ta có -49 = (-7).7 = (-1).49 = (-49).1

Lập bảng xét các trường hợp

7 - n1-49-77-149
m - 7-4917-749-1
n656140(loại)8-42
m- 438140(loại)566

Vậy các cặp (m;n) nguyên dươn thỏa mẫn là : (56;8) ; (8 ; 56) ; (14 ; 14) 

Khách vãng lai đã xóa
Linhhhhhh
Xem chi tiết
Tran Thi Xuan
Xem chi tiết
Nguyễn Tiến Sâm
11 tháng 9 2021 lúc 21:09
Tui chịu Nhé Bye Bye Các bạn
Khách vãng lai đã xóa
Bùi Gia Bách
Xem chi tiết
Nguyễn Như khánh
Xem chi tiết
Hà Như Thuỷ
Xem chi tiết
Thắng Nguyễn
19 tháng 12 2015 lúc 18:42

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

Tao không có tên
Xem chi tiết
Đào Thu Hoà
15 tháng 7 2019 lúc 23:19

* Với \(m\le2\)thì từ (1) suy ra \(n^3-5n+10=2^m\le2^2\Rightarrow n^3-5n+6\le0\)(2)

Mặt khác do \(n\inℕ^∗\)nên \(n^3-5n+6>0,\)điều này mâu thuẫn với (2). Vậy \(m>2\).

* Với  \(m=3\)thì thay vào (1) ta có: \(n^3-5n+10=2^3\Leftrightarrow\left(n^3-2n^2\right)+\left(2n^2-4n\right)-\left(n+2\right)=0\)

\(\Leftrightarrow\left(n-2\right)\left(n^2+2n-1\right)=0\)

Do \(n\inℕ^∗\)nên \(n^2-2n-1>0,\)suy ra \(n-2=0\Leftrightarrow n=2\)

* Với  \(m\ge4\)thì biến đổi (1) thành \(\left(n-2\right)\left(n^2+2n-1\right)=8\left(2^{m-3}-1\right)\)(3)

Nhận thấy: \(\left(n^2+2n-1\right)-\left(n-2\right)=n^2+n+1=n\left(n+1\right)+1\)là số lẻ và \(n\inℕ^∗\),

nên hai số \(n^2+2n-1\)và \(n-2\)là hai số tự nhiên khác tính chẵn lẻ. Do đó từ (3) xảy ra 2 khả năng

a)\(\hept{\begin{cases}n-2=8\\n^2+2n-1=2^{m-3}-1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=10\\2^{m-3}=120\end{cases}}\)

Vì  \(2^{m-3}\)là số tự nhiên có số tận cùng khác 0 nên \(2^{m-3}\ne120\). Do vậy trường hợp này không xảy ra.

b)\(\hept{\begin{cases}n-2=2^{m-3}-1\\n^2+2n-1=8\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{m-3}=n-1\\n^2+2n-9=0\end{cases}}\)

Do phương trình \(n^2+2n-9=0\)không có nghiệm tự nhiên nên trường hợp này cũng không xảy ra. 

Vậy có một cặp số nguyên dương duy nhất thỏa mãn là \(\left(m;n\right)=\left(3;2\right).\)

Cách khác : còn có thể xét các trường hợp của \(n\left(n=1;n\ge2\right)\)trước sau đó mới xét \(m\).

Nguyễn Tất Đạt
Xem chi tiết
Incursion_03
9 tháng 2 2019 lúc 0:07

Làm thử theo cách cổ truyền vậy -.-

Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)

\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)

\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)

Coi pt trên là pt bậc 2 ẩn n

Ta có : \(\Delta=4m^4+4m^2+32m-63\)

Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương

Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)

Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)

Khi đó  \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)

Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)

Nên điều giả sử là sai .

Tức là\(m\le2\)

Mà \(m\inℕ^∗\)

\(\Rightarrow m\in\left\{1;2\right\}\)

*Với m = 1 thì pt ban đầu trở thành

\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)

\(\Leftrightarrow n^2+n+1=-5\)

\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)

Pt vô nghiệm

*Với m = 2 thì pt ban đầu trở thành

\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)

\(\Leftrightarrow n^2+n+1=21\)

\(\Leftrightarrow n^2+n-20=0\)

\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)

\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)

Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)

Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC ,  ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC

CMR: a,P ; I ; Q thẳng hàng

          b, đường thẳng PQ đi qua trung điểm HK