Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Đào
Xem chi tiết
Đinh Tuấn Việt
5 tháng 8 2015 lúc 18:25

Xét tích (x+1)(x+2)(x+3)(x+4) là tích của 4 số tự nhiên liên tiếp.

Mà ta thấy 24 = 1 . 2 . 3 . 4

Vậy x + 1 = 1 ; x + 2 = 2 ; x + 3 = 3 ; x + 4 = 4

Do đó x = 0

Minh Triều
5 tháng 8 2015 lúc 18:28

(x+1)(x+2)(x+3)(x+4)= 24

<=> (x+1)(x+2)(x+3)(x+4)-24=0

<=>(x+1)(x+4)(x+2)(x+3)-24=0

<=>(x2+5x+4)(x2+5x+6)-24=0

Đặt t=x2+5x+4 ta được:

t.(t+2)-24=0

<=>t2+2t-24=0

<=>t2-4t+6t-24=0

<=>t.(t-4)+6.(t-4)=0

<=>(t-4)(t+6)=0

<=>t-4=0 hoặc t+6=0

thay t=x2+5x+4 ta được:

x2+5x=0 hoặc x2+5x+10=0

Vì x2+5x+10=x2+2.x.5/2+25/4+15/4

=(x+5/2)2+15/4>0

nên 

x2+5x=0

<=>x.(x+5)=0

<=>x=0 hoặc x=-5

KHANH QUYNH MAI PHAM
Xem chi tiết
Phan Nghĩa
1 tháng 7 2020 lúc 8:59

\(\left(x-1\right)\left(x-2\right)\left(x+3\right)\left(x+4\right)=24\)\(\left(đkxđ:x\ne1;2;-3;-4\right)\)

\(< =>\left(x^2+2x-8\right)\left(x^2+2x-3\right)=24\)

Đặt \(x^2+2x=u\)thì phương trình trở thành :

\(\left(u-8\right)\left(u-3\right)=24\)

\(< =>u^2-11u=0\)

\(< =>u\left(u-11\right)=0\)

\(< =>\orbr{\begin{cases}u=0\\u=11\end{cases}}\)

Với \(u=0\)thì \(x^2+2x=0\)\(< =>\orbr{\begin{cases}x=0\\x=-2\end{cases}\left(tmđkxđ\right)}\)

Với \(u=11\)thì \(x^2+2x-11=0< =>\orbr{\begin{cases}-1-2\sqrt{3}\\-1+2\sqrt{3}\end{cases}}\left(tmđkxđ\right)\)(giải delta)

Vậy tập nghiệm  của phương trình trên là \(\left\{0;-2;-1-2\sqrt{3};-1+2\sqrt{3}\right\}\)

Khách vãng lai đã xóa
Vũ Quang Linh
Xem chi tiết
Nguyễn Hoàng Anh Phong
5 tháng 3 2019 lúc 20:13

(x+1).(x+2).(x+3).(x+4) - 24 = 0

(x2 + 5x + 4).(x2 + 5x + 6) - 24 = 0

(x2 + 5x + 5-1).(x2 + 5x + 5 + 1) - 24 = 0

(x2 + 5x + 5)2 - 1  - 24 = 0

(x2 + 5x + 5 - 5).(x2 + 5x + 5 + 5) = 0

x.(x+5) .(x2 + 5x + 10) = 0

=> x = 0

x+ 5 = 0 => x = -5

\(x^2+5x+10>0\)

KL:..

Lê Thị Thảo Vân
5 tháng 3 2019 lúc 20:23

    (x+1)(x+2)(x+3)(x+4) - 24 = 0

<=> [(x+1)(x+4)][(x+2)(x+3)] - 24 =0

<=> (x^2+4x+x+4)(x^2+3x+2x+6) - 24 = 0

<=> (x^2+5x+4)(x^2+5x+6) - 24 = 0

  Đặt x^2+5x+5 = a, ta có

       (a-1)(a+1) - 24 = 0

<=> a^2 - 1 - 24 = 0

<=> a^2 - 25 =0

<=> a = 5

hay x^2 + 5x + 5 = 5

<=> x(x+5) = 5 - 5 = 0

<=> x=0      hoặc   x+5 = 0 <=> x= -5

   Vậy tập ngh của p.tr là S = { 0; -5 }

Trần Đức Tình
Xem chi tiết
Thắng Nguyễn
16 tháng 10 2016 lúc 23:36

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\)ta đc:

\(t\left(t+2\right)-24=0\)\(\Leftrightarrow t^2-4t+6t-24=0\)

\(\Leftrightarrow t\left(t-4\right)+6\left(t-4\right)=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t=-6\\t=4\end{cases}}\)

Với \(t=-6\Rightarrow x^2+5x+4=-6\)

\(\Rightarrow x^2+5x+10=0\)

\(\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\left(loai\right)\)

Với \(t=4\Rightarrow x^2+5x+4=4\)

\(\Rightarrow x\left(x+5\right)=0\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Phan Bảo Huân
18 tháng 1 2017 lúc 10:20

Chứng minh một số có tổng các chữ số là 2015 thì không phải là số chính phương.

Phạm Gia Linh
Xem chi tiết
HoàngMiner
6 tháng 4 2018 lúc 22:29

1, \(_{\left|x^2-5x-6\right|=x^2+x-24}\) (1)

Điều kiện \(x^2+x-24\ge0\) <=> \(\orbr{\begin{cases}x\ge\frac{-1+\sqrt{97}}{2}\\x\le\frac{-1-\sqrt{97}}{2}\end{cases}}\)

Khi đó (1) <=> \(\orbr{\begin{cases}x^2-5x-6=x^2+x-24\\x^2-5x-6=-x^2-x+24\end{cases}}\)

<=> \(\orbr{\begin{cases}-6x=-18\\2x^2-4x-30=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x^2-2x-15=0\end{cases}}\)

<=> \(x\in\left\{-3;3;5\right\}\)

Loại 2 giá trị x = -3 và x = 3 do ko t/m đk bên trên, ta đc x = 5 là nghiệm duy nhất của pt

Vậy tập nghiệm của pt là S = {5}

Đình Danh Nguyễn
6 tháng 4 2018 lúc 22:15

|x^2-5x-6|=x^2+x-24

=>x= 5

|x-1|-2|x-2|+3|x-3|=4

=> x= 5 hoac bang 1 

_Guiltykamikk_
7 tháng 4 2018 lúc 12:07

\(|x-1|-2|x-2|+3|x-3|=4\)

Lập bảng xét dấu :

x 1 2 3 
x-1-0+\(|\)+\(|\)+
x-2-\(|\)-0+\(|\)+
x-3-\(|\)-\(|\)-0+

+) Nếu \(x\le1\) thì \(|x-1|=1-x\)

                          \(|x-2|=2-x\)

                          \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(1-x\right)-2\left(2-x\right)+3\left(3-x\right)=4\)

\(\Leftrightarrow1-x-4+2x+9-3x=4\)

\(\Leftrightarrow6-2x=4\)

\(\Leftrightarrow-2x=-2\)

\(\Leftrightarrow x=1\left(tm\right)\)

+) Nếu \(1< x\le2\) thì \(|x-1|=x-1\)

                                           \(|x-2|=2-x\)

                                           \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(x-1\right)-2\left(2-x\right)+3\left(3-x\right)=4\)

\(\Leftrightarrow x-1-4+2x+9-3x=4\)

\(\Leftrightarrow4=4\) ( luôn đúng )

\(\Rightarrow\) Phương trình có nghiệm đúng với mọi x

+) Nếu \(2< x\le3\) thì \(|x-1|=x-1\)

                                           \(|x-2|=x-2\)

                                            \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(x-1\right)-2\left(x-2\right)+3\left(3-x\right)=4\)

\(\Leftrightarrow x-1-2x+4+9-3x=4\)

\(\Leftrightarrow-4x+12=4\)

\(\Leftrightarrow-4x=-8\)

\(\Leftrightarrow x=2\) ( loại )

+) Nếu \(x>3\) thì \(|x-1|=x-1\)

                                  \(|x-2|=x-2\)

                                  \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(x-1\right)-2\left(x-2\right)+3\left(x-3\right)=4\)

\(\Leftrightarrow x-1-2x+4+3x-9=4\)

\(\Leftrightarrow2x-6=4\)

\(\Leftrightarrow x=5\left(tm\right)\)

Vậy ...

BADGIRL2k10
Xem chi tiết
Xem chi tiết
Công Chúa Yêu Văn
Xem chi tiết
Hoàng Thị Lan Hương
13 tháng 7 2017 lúc 16:05

1. Ta có \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)

\(\Rightarrow\)\(\left[\left(x+2\right)\left(x+8\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+16=0\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

Đặt \(x^2+10x=t\)

Pt \(\Leftrightarrow\left(t+16\right)\left(t+24\right)+16=0\Leftrightarrow t^2+40t+400=0\Leftrightarrow t=-20\)

\(\Rightarrow x^2+10x+20=0\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

2. Ta có \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Rightarrow\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

Đặt \(x^2+7x=t\Rightarrow\left(t+10\right)\left(t+12\right)-24=0\Rightarrow t^2+22t+96=0\)\(\Rightarrow\orbr{\begin{cases}t=-6\\t=-16\end{cases}}\)

Với \(t=-6\Rightarrow x^2+7x+6=0\Rightarrow\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

Với \(t=-16\Rightarrow x^2+7x+16=0\left(l\right)\)

Vậy pt có 2 nghiệm là \(\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

Girl Little
18 tháng 7 2017 lúc 9:44

Quản lí Hoàng Thị Lan Hương giúp em giải bài toán vừa đăng lên đc ko ạ.??? ^^

Hoàng Vũ
Xem chi tiết
Âu Dương Thiên Vy
9 tháng 3 2018 lúc 21:42

1 ) đặt ẩn phụ 

căn(x+4) = a

căn(4-x) = b

=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x 

Thay vào phương trình giải rất dễ

2) điều kiện xác định " x lớn hơn hoặc = 1

từ ĐKXĐ => vế trái lớn hơn hoặc = 1

=> 2 - x lớn hơn hoặc = 1

=> x nhỏ hơn hoặc = 1

kết hợp ĐKXĐ => x = 1

3) mk chưa biết làm