Cho các số thực dương tm
x² +y²+z²≤3y
Tim min P=1/(x+1)²+4/(y+2)²+8/(z+3)²
cho x,y,z là các số thực dương tm \(3xyz\ge x+y+z\)
tìm min của P= \(\frac{xy+yz+xz-1}{\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}}\)
Cho x, y, z là các số thực dương TM: \(x+y+z\le1\)
Tìm min \(Q=2\left(x+y+z\right)+3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(Q\ge2\left(x+y+z\right)+3.\frac{9}{x+y+z}=2\left(x+y+z\right)+\frac{27}{x+y+z}.\)
Đặt X+Y+Z=t (\(t\le1\))
\(Q\ge2t+\frac{27}{t}=\left(2t+\frac{2}{t}\right)+\frac{25}{t}\ge2\sqrt{2t.\frac{2}{t}}+\frac{25}{1}=4+25=29\\ \)
Dấu = xảy ra khi x=y=z=1/3
Theo bđt cô si ta có : \(x+y+z\ge3\sqrt[3]{xyz}\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
=> \(Q\ge6\sqrt[3]{xyz}+9\sqrt[3]{\frac{1}{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}\cdot9\sqrt[3]{\frac{1}{xyz}}}=6\sqrt{6}\)
Dấu = xảy ra khi : \(6\sqrt[3]{xyz}=9\sqrt[3]{\frac{1}{xyz}}\) Giải ra ta đc : \(xyz=\frac{3}{2}\sqrt{\frac{3}{2}}\)
bạn hiếu làm sai rồi, Min Q=29 khi x=y=z=1/3
cho các số thực dương x,y,z tm x+y+z<=1
tìm Min P=\(\frac{1}{xz}+\frac{1}{yz}\)
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
Cho 3 số thực dương x,z,y tm x+y+z=\(\sqrt{2}\). Tìm MIN T=\(\sqrt{(x+y)(y+z)(x+z)}(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{y+x}}{z}+\frac{\sqrt{x+z}}{y})\)
cho x,y,zlà các số thực dương tm: x+y+z=3.CMR P=\(x\sqrt{y^3+1}+y\sqrt{z^3+1}+z\sqrt{x^3+1}\)
cho x,y,z là các số nguyên dương tm \(xyz\ge x+y+z+2\)
tim min x+y+z
☘ Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết đề bài cho
\(\Rightarrow\dfrac{\left(x+y+z\right)^3}{27}\ge xyz\ge x+y+z+2\)
☘ Đặt \(x+y+z=t\)
\(\Rightarrow\dfrac{t^3}{27}\ge t+2\)
\(\Leftrightarrow t^3-27t-54\ge0\)
\(\Leftrightarrow\left(t-6\right)\left(t+3\right)^2\ge0\)
\(\Leftrightarrow t\ge6\)
⚠ Tự kết luận.
cho các số dương x,y,z thay đổi tm x(x+1)+y(y+1)+z(z+1)\(\le18\) Tìm Min
\(B=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
Cho x,y,z là các số thực dương t/m: x+y+z=3 . Tìm min BT \(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)
\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)