Tính tổng :
S = 1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)(n\(\in\)Z+)
tính tổng \(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in Z\right)\)
Tính tổng S= 1+2+5+14+.......+\(\frac{3^{n-1}+1}{2}\)(n thuộc Z)
Tính tổng : S = 1 + 2 + 5 + 14 + ........ + \(\frac{3^{n-1}+1}{2}\) ( với n thuộc Z )
áp dụng quy tắc
số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1
Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2
Tính tổng S=1+2+5+14+....+3^x-1+1/2( n thuộc Z)
\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)
\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)
\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)
\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)
Đặt \(A=1+3+3^2+....+3^{x-1}\)
\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)
\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)
\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)
Tính tổng:
S= 1 + 2 + 5 + 14 +... + 3n - 1 + 1/2 ( với n thuộc Z)
Tính giá trị của biểu thức :
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\) với \(n\in Z+\)
Có 1 = \(\frac{3^0+1}{2}\)
2 = \(\frac{3^1+1}{2}\)
5 = \(\frac{3^2+1}{2}\)
14 = \(\frac{3^3+1}{2}\)
.......
=> S = \(\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+1.n}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+n}{2}\)
Đặt A = 30 + 31 + 32 + 33 +....+ 3n-1
=> 3A = 31 + 32 + 33 +....+ 3n
=> 2A = 3A - A = 3n - 30
=> A = \(\frac{3^n-1}{2}\)
Thay A vào S, ta có:
S = \(\frac{\frac{3^n-1}{2}+n}{2}\)
=> S = \(\frac{3^n-1}{4}+\frac{n}{2}\)
Hồ Thu Giang à, trong 4 đáp án ở bài Cóc vàng tài ba đó ko có cái này !
Tính tổng:
S= 1+ 2+ 5+ 14+...+ 3^n-1 +1/ 2 ( với n thuộc Z+)
S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)
=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)
=n^2/2+(3^n-1/4)=3^n+2-1/4
~~~~~~~~~~~~~~~~~~~~~
S = 1+2+5+14+ ... +\(\frac{3^{n-1}+1}{2}\)với n thuộc Z
Tính tổng:
\(S=1+2+5+14+.....+\frac{3^{n-1}+1}{2}\)với n là số nguyên dương.
nhìn cái cuối là biết quy luật đó bạn :))
\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)
\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)
chỗ 30+31+...+3n-1 bn tự tính :))