Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đoàn mạnh  trí
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Đặng Hoàng Long
18 tháng 2 2019 lúc 22:46

Hình dễ, bạn tự kẻ :D
- Từ A kẻ AH⊥BC (H∈BC)AH⊥BC (H∈BC). ΔABCΔABC vuông cân ở A có AH là đường cao đồng thời là đường trung tuyến 
- Gọi giao điểm của AH và BD là G →G→G là trọng tâm ΔABC→AGAH=23ΔABC→AGAH=23
- ΔAEBcóBG⊥AE; AH⊥BE→GΔAEBcóBG⊥AE; AH⊥BE→G là trực tâm ΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CHΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CH
→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH
- Ta có EB:EC=4CH32CH3=2→EB=2EC

X Drake
Xem chi tiết
trần văn tấn tài
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Nguyễn Linh Chi
4 tháng 3 2019 lúc 9:31

A C B H D M K

Qua B kker đường thẳng song song với AC cắt AD tại H

=> BH vuông AB

Xét tam giác ABH và tam giác CAM 

Có \(\widehat{ABH}=\widehat{CAM}=90^o\)

AB =AC ( ytam giác ABC cân)

\(\widehat{BAH}=\widehat{ACM}\)( cùng phụ với góc AMC)

=> Tam giác ABH=CAM

=> BH=MA

Vì BH//AC theo định lí thales

\(\frac{BD}{DC}=\frac{BH}{AC}=\frac{AM}{AB}=\frac{1}{2}\)

Trần Ngọc Linh
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Nguyễn bá quốc
Xem chi tiết
Nguyễn bá quốc
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 22:39

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc EBF chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔBFC can tai B

mà BD là phân giác

nên BD là trung tuyến

Phan Thái Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 10:26

a; Xét ΔBAD vuôg tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc B chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔCBF cân tại B

mà BD là phân giác

nên BD là trung tuyến