Chứng minh đẳng thức sau ( đề dưới cmt)
Chứng minh đẳng thức sau ( đề dưới cmt)
Chứng minh đẳng thức, đề dưới bình luận
VT = \(\frac{1-cosx+cos2x}{sin2x-sin}\)
= \(\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
= \(\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}\)
= cotx = VP ( đpcm )
đề bài là chứng minh các đẳng thức sau
\(-\sqrt{121a^2}+3\sqrt{36a^2}+\sqrt{49a^2}=-11\left|a\right|+18\left|a\right|+7\left|a\right|=11a-18a-7a=-14a\left(đpcm\right)\left(do.a< 0\right)\)
chứng tỏ rằng :
đề dưới cmt
Chứng minh các đẳng thức, mệnh đề sau bằng phương pháp quy nạp toán học: (n6-3n5+6n4-7n3+5n2-2n) chia hết 24
Với \(n=0\Rightarrow0-0+0-0+0-0=0⋮24\left(đúng\right)\)
Với \(n=1\Rightarrow1-3+6-7+5-2=0⋮24\left(đúng\right)\)
G/s \(n=k\Rightarrow\left(k^6-3k^5+6k^4-7k^3+5k^2-2k\right)⋮24\)
\(\Rightarrow k\left(k^5-3k^4+6k^3-7k^2+5k-2\right)⋮24\\ \Rightarrow k\left(k+1\right)\left(k^2+k+1\right)\left(k^2-k+2\right)⋮24\)
Với \(n=k+1\), ta cần cm \(\left[\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\right]⋮24\)
Ta có \(\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\)
\(=\left(k+1\right)\left[\left(k+1\right)^5-3\left(k+1\right)^4+6\left(k+1\right)^3-7\left(k+1\right)+5\left(k+1\right)-2\right]\\ =\left(k+1\right)\left(k+1-1\right)\left[\left(k+1\right)^2-\left(k+1\right)+1\right]\left[\left(k+1\right)^2-\left(k+1\right)+2\right]\\ =k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)\)
Mà theo GT quy nạp ta có \(k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)⋮24\)
Vậy ta được đpcm
Chứng minh các đẳng thức, mệnh đề sau bằng phương pháp quy nạp toán học:
(n6-3n5+6n4-7n3+5n2-2n):24(13n-1):6
Chứng minh đẳng thức sau
Chứng minh đẳng thức sau
Chứng minh đẳng thức sau:
\(=1-\dfrac{sin^2x}{1+\dfrac{cosx}{sinx}}-\dfrac{cos^2x}{1+\dfrac{sinx}{cosx}}=1-\dfrac{sin^3x}{sinx+cosx}-\dfrac{cos^3x}{sinx+cosx}\)
\(=1-\dfrac{sin^3x+cos^3x}{sinx+cosx}=1-\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}\)
\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)