Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Huu Phuc
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2023 lúc 22:10

\(\Delta=\left(2m+8\right)^2-4\left(m^2-8\right)\)

=4m^2+32m+64-4m^2+32

=32m+96

Để phương trình có hai nghiệm phân biệt thì 32m+96>0

=>m>-3

\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)

=>(x1+x2)^2=4m^2+32m+64 và 4x1x2=4m^2-32

=>(x1+x2)^2-4x1x2=32m+96

=>x1^2+x2^2-2x1x2=32m+96

=>(x1-x2)^2-16(x1+x2)+32=32m+96-16(2m+8)+32=0

=>(x1-x2)^2-16(x1+x2)+32=0 ko phụ thuộc vào m

Phương Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 4 2022 lúc 13:21

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2019 lúc 10:57

Đáp án D

Khánh Linh
Xem chi tiết
Mi Bui
Xem chi tiết
Nguyễn Anh Quân
8 tháng 3 2018 lúc 12:41

a, Khi m = 0 thì : 

pt <=> x^2+2x-3 = 0 

<=> (x-1).(x+3) = 0

<=> x-1=0 hoặc x+3=0

<=> x=1 hoặc x=-3

Tk mk nha

Wang Lucas
Xem chi tiết
Bùi Doãn Nhật Quang
26 tháng 2 2022 lúc 9:31

\(x^2+2x-1-m^2=0\Leftrightarrow\left(x-1\right)^2=m^2\)

                                    \(\Leftrightarrow x-1=\sqrt{m^2}=\left|m\right|\)

                                    \(\Leftrightarrow\left[{}\begin{matrix}x-1=m\\x-1=-m\end{matrix}\right.\)

                                    \(\Leftrightarrow\left[{}\begin{matrix}x=1+m\\x=1-m\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x_1=1+m\\x_2=1-m\end{matrix}\right.\)

trần lê tuyết mai
Xem chi tiết
Đỗ Tuệ Lâm
20 tháng 3 2022 lúc 15:44

undefined

Hoàng Văn Anh
Xem chi tiết
Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 10:04

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

NgDinhDuc
Xem chi tiết
2611
16 tháng 5 2023 lúc 21:32

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

      `<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`

                   `<=>m^2+m+3 > 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`

                        `<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`

              `=>x_1+x_2-2x_1.x_2=6`