Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiên lê
Xem chi tiết
minh nguyen thi
Xem chi tiết
Akai Haruma
26 tháng 7 2018 lúc 23:55

Lời giải:

Liên hợp.

PT(1)\(\Rightarrow (x-\sqrt{2015+x^2})(x+\sqrt{2015+x^2})(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Leftrightarrow [(x^2)-(2015+x^2)](y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Rightarrow -2015(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Rightarrow y+\sqrt{2015+y^2}=\sqrt{2015+x^2}-x(*)\)

Tương tự, nhân cả 2 vế của PT(1) với \(y-\sqrt{2015+y^2}\) ta cũng thu được:

\(x+\sqrt{2015+x^2}=\sqrt{2015+y^2}-y(**)\)

Từ \((*);(**)\Rightarrow x+y=0\Rightarrow y=-x\)

Thay vào PT (2)

\(3x^2+8x^2+12x^2=23\Rightarrow 23x^2=23\Rightarrow x=\pm 1\)

\(\Rightarrow y=\mp 1\)

Vậy..........

Nguyễn Hoàng Long
Xem chi tiết
Lightning Farron
13 tháng 5 2018 lúc 17:14

Sửa \(y+\sqrt{2015+x^2}\rightarrow y+\sqrt{2015+y^2}\)

Ta có: \(\left(x+\sqrt{2015+x^2}\right)\left(y+\sqrt{2015+y^2}\right)=2015\)

\(\Leftrightarrow\left(x+\sqrt{2015+x^2}\right)\left(\sqrt{2015+x^2}-x\right)\left(y+\sqrt{2015+y^2}\right)=2015\left(\sqrt{2015+x^2}-x\right)\)

\(\Leftrightarrow2015\left(y+\sqrt{2015+y^2}\right)=2015\left(\sqrt{2015+x^2}-x\right)\)

\(\Leftrightarrow x+y=\sqrt{2015+x^2}-\sqrt{2015+y^2}\)

Tương tự ta cũng có: \(x+y=\sqrt{2015+y^2}-\sqrt{2015+x^2}\)

Cộng theo vế 2 đẳng thức trên ta có:

\(2\left(x+y\right)=0\Leftrightarrow x=-y\)

Thay \(x=-y\) vào \(pt\left(2\right)\) ta có:

\(23y^2=23\Leftrightarrow y=\pm1\Leftrightarrow x=\mp1\)

Thảo
Xem chi tiết
vũ manh dũng
Xem chi tiết
Hồng Phúc
10 tháng 1 2021 lúc 11:25

Từ phương trình \(\left(2\right)\)\(3x+4y=0\Leftrightarrow y=-\dfrac{3}{4}x\)

Thế vào phương trình \(\left(1\right)\) ta được:

\(\left(18x^2+\dfrac{9}{2}x-17\right)\left(21x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3\pm\sqrt{553}}{24}\\x=\pm\dfrac{\sqrt{21}}{21}\end{matrix}\right.\)

\(x=\dfrac{-3+\sqrt{553}}{24}\Rightarrow y=\dfrac{3-\sqrt{553}}{32}\)

\(x=\dfrac{-3-\sqrt{553}}{24}\Rightarrow y=\dfrac{3+\sqrt{553}}{32}\)

\(x=\dfrac{\sqrt{21}}{21}\Rightarrow y=-\dfrac{\sqrt{21}}{28}\)

\(x=-\dfrac{\sqrt{21}}{21}\Rightarrow y=\dfrac{\sqrt{21}}{28}\)

Vậy ...

Nguyễn Thị Thanh Trúc
Xem chi tiết
Clgt
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 23:32

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2y^2-4xy+x+8y-4=0\\2x^2-2y^2+4x+2y-6=0\end{matrix}\right.\)

\(\Rightarrow x^2+4y^2-4xy-3x+6y+2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=2\end{matrix}\right.\)

Khách vãng lai đã xóa
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2021 lúc 0:17

a.

Thay số 12 từ pt trên xuống dưới:

\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)

Thế vào pt đầu:

\(\left(-2y\right)^2+8y^2=12\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

Nguyễn Việt Lâm
27 tháng 3 2021 lúc 0:18

b.

Thế số 1 từ pt trên xuống dưới:

\(x^7+y^7=\left(x^4+y^4\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow x^4y^3+x^3y^4=0\)

\(\Leftrightarrow x^3y^3\left(x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-x\end{matrix}\right.\)

Thế vào pt đầu: \(\Rightarrow\left[{}\begin{matrix}y^3=1\\x^3=1\\x^3-x^3=1\left(vô-nghiệm\right)\end{matrix}\right.\)

Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 22:09

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?