Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 13:40

c: \(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\)

\(=4x^2+12x+9+4x^2-12x+9-\left(4x^2-9\right)\)

\(=8x^2+18-4x^2+9=4x^2+27\)

d: \(\left(x-1\right)\cdot\left(x^2+x+1\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\)

\(=\left(x-1\right)\left(x^2+x\cdot1+1^2\right)-\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)

\(=x^3-1-8x^3-27=-7x^3-28\)

e: \(\left(x+1\right)^3-\left(x-1\right)^3-6x^2\)

\(=x^3+3x^2+3x+1-6x^2-\left(x^3-3x^2+3x-1\right)\)

\(=x^3-3x^2+3x+1-x^3+3x^2-3x+1\)

=2

vân nguyễn
Xem chi tiết
Kenny
30 tháng 6 2021 lúc 8:52

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

Kenny
30 tháng 6 2021 lúc 8:58

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

Kenny
30 tháng 6 2021 lúc 9:12

c)3x(2-x)+2x(x-1)=5x(x+3)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)

\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)

Bach Tang Oni
Xem chi tiết
ILoveMath
2 tháng 12 2021 lúc 20:58

\(a,=\dfrac{4x+8}{x^2+2x}=\dfrac{4\left(x+2\right)}{x\left(x+2\right)}=\dfrac{4}{x}\\ b,=\dfrac{\left(2x-3\right)-\left(2x-4\right)}{x-2}=\dfrac{2x-3-2x+4}{x-2}=\dfrac{1}{x-2}\\ c,=\dfrac{2x-1-3x-2}{x+3}=\dfrac{-x-3}{x+3}=\dfrac{-\left(x+3\right)}{x+3}=-1\\ d,=\dfrac{11x-18+x}{2x-3}=\dfrac{12x-18}{2x-3}=\dfrac{6\left(2x-3\right)}{2x-3}=6\)

\(e,=\dfrac{3x-6-9x+3}{2x+1}=\dfrac{-6x-3}{2x+1}=\dfrac{-3\left(2x+1\right)}{2x+1}=-3\)

 

Thư Phạm
Xem chi tiết
Akai Haruma
9 tháng 9 2021 lúc 9:15

Lời giải:

a.

$(2x-3)^2+(2x+3)(5-2x)=(4x^2-12x+9)-(-4x^2+4x+15)$

$=4x^2-12x+9+4x^2-4x-15$

$=24-8x$
b.

$3(2x-3)+5(x+2)=6x-9+5x+10=11x+1$

c.

$3x(2x-8)+(6x-2)(5-x)=(6x^2-24x)+(-6x^2+32x-10)$

$=6x^2-24x-6x^2-32x+10$

$=8x-10$

d.

$(x-3)(x+3)-(x-5)^2=(x^2-9)-(x^2-10x+25)$

$=x^2-9-x^2+10x-25=10x-34$

e.

$(x-y)^3-(x-y)(x^2+xy+y^2)=(x^3-3x^2y+3xy^2-y^3)-(x^3-y^3)$

$=-3x^2y+3xy^2=3xy(y-x)$

Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 9:27

a: ta có: \(\left(2x-3\right)^2+\left(2x+3\right)\left(5-2x\right)\)

\(=4x^2-12x+9+2x-4x^2+15-6x\)

\(=-16x+24\)

b: Ta có: \(3\left(2x-3\right)+5\left(x+2\right)\)

\(=6x-9+5x+10\)

\(=11x+1\)

c: ta có: \(3x\left(2x-8\right)+\left(6x-2\right)\left(5-x\right)\)

\(=6x^2-24x+30x-6x^2-10+2x\)

\(=8x-10\)

Chung Tran
Xem chi tiết
Huỳnh Thị Thanh Ngân
14 tháng 8 2021 lúc 17:35

Bài 1

A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2

Harry Poter
14 tháng 8 2021 lúc 22:04

Bài 1:

a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)

\(A=2x^2-x-4x+2-2x^2-6x\)

\(A=-11x+2\)

b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)

\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)

\(B=-12x\)

c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)

\(C=12x^2+18x-12x^2+8x+3x-2\)

\(C=29x-2\)

d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)

\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)

\(D=36x-10\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 23:00

Bài 2: 

a: Ta có: \(2x\left(3x-5\right)\left(x+11\right)-3x\left(2x+3\right)\left(x+7\right)\)

\(=2x\left(3x^2+33x-5x-55\right)-3x\left(2x^2+14x+3x+21\right)\)

\(=6x^3+56x^2-110x-6x^2-51x^2-63x\)

\(=-117x\)

b: Ta có: \(\left(x^2+5x-6\right)\left(x-1\right)-\left(x+2\right)\left(x^2-x+1\right)-x\left(3x-10\right)\)

\(=x^3+4x^2-11x+6-\left(x^3-x^2+x+2x^2-2x+2\right)-3x^2+10x\)

\(=x^3+x^2-x+6-x^3-x^2+x-2\)

=4

c: Ta có: \(\left(x^2+x+1\right)\left(x-1\right)-x^2\left(x+1\right)+x^2-5\)

\(=x^3-1-x^3-x^2+x^2-5\)

=-6

Manie Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 13:41

a: \(=2x^2-4x-6x+12-2x^2+10x=12\)

Quang Khánh
Xem chi tiết
Yoidsxc Wed
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 19:54

a: |x+9|=2

=>x+9=2 hoặc x+9=-2

=>x=-7 hoặc x=-11

b: |2x-3|=x-3

\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\\left(2x-3-x+3\right)\left(2x-3+x-3\right)=0\end{matrix}\right.\Leftrightarrow x=3\)

ERROR?
10 tháng 5 2022 lúc 20:05

refer

Lương Gia Bảo
Xem chi tiết
Minh Phương
16 tháng 5 2023 lúc 20:14

\(a.2x-3=4x+6\) 

\(\Leftrightarrow2x-3-4x-6=0\) 

\(\Leftrightarrow-2x-9=0\)

\(\Leftrightarrow x=\dfrac{9}{2}\)

\(S=\left\{\dfrac{9}{2}\right\}\) 

\(b.x\left(x-1\right)+x\left(x+3\right)=0\) 

\(\Leftrightarrow x^2-x+x^2+3x=0\)

\(\Leftrightarrow2x^2+2=0\)

\(\Leftrightarrow x\left(2x+2\right)=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) 

\(S=\left\{0,-1\right\}\) 

Mấy câu khác bn gửi lại đc ko tại mik chx hiểu lắm

Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 18:54

a: =>-2x=9

=>x=-9/2

c: =>x(x-1+x+3)=0

=>x(2x+2)=0

=>x=0 hoặc x=-1

Lương Gia Bảo
Xem chi tiết
YangSu
16 tháng 5 2023 lúc 16:30

\(a,2x-3=4x+6\)

\(\Leftrightarrow2x-4x=6+3\)

\(\Leftrightarrow-2x=9\)

\(\Leftrightarrow x=-\dfrac{9}{2}\)

\(b,\) Ghi vậy mình không làm được.

\(c,\)\(x\left(x-1\right)+x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x-1+x+3\right)=0\)

\(\Leftrightarrow x\left(2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

\(d,\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}=0\left(dkxd:x\ne-1;x\ne3\right)\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)-x\left(x-3\right)-2.2}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow x^2+x-x^2+3x-4=0\)
\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow x=1\left(tmdk\right)\)

Vậy \(S=\left\{1\right\}\)