Tìm x biết: \(\frac{1}{3}.\left(2x-\frac{1}{2}\right)^4=\frac{1}{243}\)
Tìm x biết : \(\left(\frac{1}{3}\right)^x\left(\frac{1}{9}\right)^x\left(\frac{1}{27}\right)^x\left(\frac{1}{81}\right)^x\left(\frac{1}{243}\right)^x=\left(-\frac{1}{3}\right)^{30}\)
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Tìm x, biết :
a) \(\left(x-\frac{1}{5}\right)^5\)=\(\frac{1}{243}\)
b) | 2x - 1 | - x = 1
c)\(\left|\frac{3}{5}-\frac{1}{2}x\right|\)>\(\frac{2}{5}\)
a.
\(\left(x-\frac{1}{5}\right)^5=\frac{1}{243}\)
\(x-\frac{1}{5}=\sqrt[5]{\frac{1}{243}}\)
\(x-\frac{1}{5}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{5}\)
\(x=\frac{8}{15}\)
b.
|2x-1|-x=1
\(\Leftrightarrow\orbr{\begin{cases}2x-1-x=1\\-2x+1-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy x= 0 hoặc x=2
c. \(\left|\frac{3}{5}-\frac{1}{2}x\right|>\frac{2}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{5}-\frac{1}{2}x>\frac{2}{5}\\-\frac{3}{5}+\frac{1}{2}x>\frac{2}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x< \frac{1}{5}\\\frac{1}{2}x>\frac{-1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< \frac{2}{5}\\x>\frac{-2}{5}\end{cases}}\)
Vậy....
Bài giải
a, \(\left(x-\frac{1}{5}\right)^5=\frac{1}{243}\)
\(\left(x-\frac{1}{5}\right)^5=\left(\frac{1}{2}\right)^5\)
\(x-\frac{1}{5}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{5}\)
\(x=\frac{7}{10}\)
Tìm x biết:
\(\frac{-1}{2}\times\left(3x-1\right)+\frac{3}{4}\left(3-2x\right)=-3\times\left(\frac{x}{2}-1\right)-\left(\frac{4}{5}\right)^{-1}\)
Tìm x biết:
\(\left(2x+\frac{1}{3}\right)\left(\frac{3}{4}x-6\right)-\left(3x-\frac{2}{3}\right)\left(\frac{1}{2}x-\frac{6}{9}\right)=1\)
Tìm x và y biết:
d)\(-1\frac{2}{3}-\left(\left|2x\right|+\frac{5}{6}\right)=\)\(-2\)e)\(\left(-\frac{1}{2}+\frac{1}{3}\right):\left|1-2x\right|-1\frac{1}{4}:\left(-\frac{5}{8}\right).\left(-\frac{1}{2}\right)^2=\frac{1}{3}\)
c)\(\left|2x-1\right|+\left|2y+1\right|+\left|2x-y\right|=0\)b)\(\left|2x-1\right|=2x-1\)
a)\(\left|x-3\right|=x+4\)
Rút gọn: a)\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}.12^{10}}\)
b)\(\frac{\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
Tìm x
a)\(3^{x+1}=9^x\)
b)\(2^{3x+2}=4^{x+5}\)
c)\(3^{2x-1}=243\)
1 Tính
\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3\)
\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}\)
\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}\)
2 Tìm x thuộc Q bt
\(3^{x+1}=9^x\)
\(\left(x-0,1\right)^2=6,25\)
\(3^{2x-1}=243\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\)
a)\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3=3-1+\frac{1}{16}.8=3-1+\frac{1}{2}=\frac{5}{2}\\ \)
b)\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}=2^5.\frac{9}{4}=72\)
c)\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^5:\left(\frac{3}{2}\right)^3=\frac{9}{128}\)
2)
\(3^{x+1}=9^x\Leftrightarrow3^x.3=9^x\Rightarrow3=9^x:3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(\left(x-0,1\right)^2=6,25\Leftrightarrow\left(x-0,1\right)^2=2,5^2\Rightarrow\left(x-0,1\right)=2,5\Rightarrow x=2,5+0,1=2,6\)
\(3^{2x-1}=243\Leftrightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow2x=6\Rightarrow x=3\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\Rightarrow x=1\)
Tìm x,y,z biết:
1,\(\left(2x+1-3^{-1}\right)^2=16\)
2, \(\left(3x-2\right)^5=243\)
3. \(\left(x-3\right)^x=\left(x-3\right)^2\)
4. \(\left(\frac{-3}{4}\right)3x-1=\frac{256}{31}\)
5. \(5^{x+2}+5^{x+3}=750\)
6, \(3^{2x+1}\cdot7^y=3\cdot21^x\)
7.\(\frac{3^{2x+1}}{3^{2x+2}}=\frac{7x}{7y}\)
8. \(\frac{3^{3x}}{3^{2x-y}}=3^5;5^{x-6}\)