Tìm n để biểu thức A là 1 sô nguyên biết:
A=\(\frac{2n-3}{n+1}\)
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a,Tìm n để A nhận giá trị nguyên
b,Tìm n để A là phân số tối giản
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là phân số tối giản
Cho biểu thức A= \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a, Rút gon A
b. Tìm số nguyên n để Á nhận giá trị là số nguyên.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.
Cho biểu thức A=\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tim n để A là phân số tối giản
Tìm n để biểu thức sau là số nguyên :
\(A=\frac{2n+1}{n+2}-\frac{n+1}{n+2}+\frac{3n+5}{2n+4}+\frac{4n+6}{3n+6}-\frac{10n+12}{5n+10}-\frac{12n+3}{4n+8}\)
1. Tìm các giá trị nguyên của n để biểu thức A = \(\frac{2n+5}{n-3}\) có giá trị là một số nguyên.
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)
cho biểu thức A=\(\dfrac{3}{n-2}\). Tìm các số nguyên để biểu thức A là phân sô
\(A=\dfrac{3}{n-2}\)
\(ĐK:n-2\ne0\Leftrightarrow n\ne2\)
Vậy mọi n khác 2 đều thỏa mãn.
để A là phân số
\(\Rightarrow\) 3 ko chia hết cho n-2
\(\Rightarrow\left[{}\begin{matrix}n-2=3k+1\\n-2=3k+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=3q\\n=3q+1\end{matrix}\right.\)
vậy...
Để $A = \dfrac{3}{n-2}$ là phân số thì :
Mẫu số phải khác $0$
Tức là $n-2 \neq 0 $
$\to n \neq 2$
Vậy $n \neq 2$ thì biểu thức A là phân số.
Tìm các số nguyên n để biểu thức sau có giá trị là số nguyên:
A = \(\dfrac{2n-1}{3-n}\)
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)
Cho biểu thức A= \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a. Rút gọn A
b.Tìm số nguyên n để A nhận giá trị là số nguyên.
Cho biểu thức A = \(\frac{19}{n+2}\)
a) Số nguyên n phải có điều kiện gì để A là phân số
b) Tìm n để A là sô nguyên