Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Quế Ngân
Xem chi tiết
Nguyễn Tuấn Anh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 20:41

a: \(A=-\dfrac{5}{4}\cdot\dfrac{2}{5}\cdot x^3\cdot x^2\cdot x^3\cdot y\cdot y^4=\dfrac{-1}{2}x^8y^5\)

hệ số là -1/2

bậc là 13

b: \(B=\dfrac{-3}{4}x^5y^4\cdot xy^2\cdot\dfrac{-8}{9}x^2y^5=\dfrac{2}{3}x^8y^{11}\)

Hệ số là 2/3

Bậc là 19

c: \(C=-x^6y^3\cdot\dfrac{1}{2}x^2y^3\cdot4x^2y^4z^2=-2x^{10}y^{10}z^2\)

Hệ số là -2

Bậc là 22

d: \(D=-\dfrac{1}{27}x^3y^6\cdot\left(-a\right)xy=\dfrac{1}{27}ax^4y^7\)

Hệ số là 1/27a

Bậc là 11

Nguyễn Huy Tú
1 tháng 3 2022 lúc 20:43

\(A=-\dfrac{1}{2}x^8y^5\)bậc 13;hế số -1/2

\(B=\dfrac{2}{3}x^8y^{11}\)bậc 19 

\(C=\left(-x^6y^3\right).\dfrac{1}{2}x^2y^3\left(4x^2y^4z^2\right)=-2x^{10}y^{13}z^2\)bậc 25 ; hệ số -2

\(D=\left(-\dfrac{1}{27}x^3y^6\right)\left(-axy\right)=\dfrac{a}{27}x^4y^7\)bậc 11 ; hệ số 1/27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 10 2019 lúc 17:35

Q =  x - y 3  +  y + x 3  +  y - x 3  – 3xy(x + y)

      = x 3  – 3 x 2 y + 3x y 2  – y 3  +  y 3  + 3 y 2 .x + 3y x 2  +  x 3  + y 3  – 3 y 2 .x +3y x 2  –  x 3  – 3 x 2 y – 3x y 2

      =  x 3  – 3 x 2 y + 3x y 2  –  y 3  +  y 3  + 3.x y 2  + 3 x 2 .y +  x 3  +  y 3  – 3x. y 2 + 3 x 2 .y –  x 3  – 3 x 2 y – 3x y 2

       = (  x 3  +  x 3  –  x 3 )+ ( - 3 x 2 y + 3 x 2 y+ 3 x 2 y – 3 x 2 y)+ (3x y 2  + 3x y 2  - 3x y 2 - 3x y 2 ) + (- y 3 +  y 3 +  y 3  )

       =  x 3  + 0 x 2 y + 0.x y 2  +  y 3

       =  x 3 + y 3

cù thị lan anh
Xem chi tiết
Akai Haruma
12 tháng 10 2021 lúc 19:10

Bài 1:

a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)

\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)

b.

\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)

Akai Haruma
12 tháng 10 2021 lúc 19:12

Bài 2:

\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)

\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)

\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)

\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)

\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)

Hải Sơn
Xem chi tiết
Akai Haruma
28 tháng 1 2021 lúc 23:51

Lời giải:

\(A=\frac{x^3-y^3-z^3-3xyz}{(x+y)^2+(y-z)^2+(x+z)^2}=\frac{(x-y)^3+3xy(x-y)-z^3-3xyz}{x^2+y^2+2xy+y^2-2yz+z^2+z^2+x^2+2xz}\)

\(=\frac{(x-y)^3-z^3+3xy(x-y-z)}{2x^2+2y^2+2z^2+2xy-2yz+2xz}=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2]+3xy(x-y-z)}{2(x^2+y^2+xy-yz+xz)}\)

\(=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2+3xy]}{2(x^2+y^2+xy-yz+xz)}=\frac{(x-y-z)(x^2+y^2+z^2+xy-yz+xz)}{2(x^2+y^2+z^2+xy-yz+xz)}=\frac{x-y-z}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2019 lúc 16:55

Nguyên Hoàng
Xem chi tiết
NLT MInh
5 tháng 8 2021 lúc 8:54
tridung
Xem chi tiết
Trương Huy Hoàng
1 tháng 5 2020 lúc 16:39

Đề lỗi rồi kìa, bạn viết lại đi tridung

Nguyền Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 18:49

1: \(=\dfrac{x-1}{x^2+x+1}+\dfrac{x+1}{x-1}\)

\(=\dfrac{x^2-2x+1+x^3+x^2+x^2+x+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^3+3x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

2: \(=\dfrac{\left(x^2-y^2\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)^2}{x^2+xy+y^2}\)

quangvinh
Xem chi tiết
Kiều Vũ Linh
27 tháng 9 2023 lúc 13:36

a) x⁴ + 2x² + 1

= (x²)² + 2.x².1 + 1²

= (x² + 1)²

b) 4x² - 12xy + 9y²

= (2x)² - 2.2x.3y + (3y)²

= (2x - 3y)²

c) -x² - 2xy - y²

= -(x² + 2xy + y²)

= -(x + y)²

d) (x + y)² - 2(x + y) + 1

= (x + y)² - 2.(x + y).1 + 1²

= (x - y + 1)²

Kiều Vũ Linh
27 tháng 9 2023 lúc 14:37

e) x³ - 3x² + 3x - 1

= x³ - 3.x².1 + 3.x.1² - 1³

= (x - 1)³

g) x³ + 6x² + 12x + 8

= x³ + 3.x².2 + 3.x.2² + 2³

= (x + 2)³

h) x³ + 1 - x² - x

= (x³ + 1) - (x² + x)

= (x + 1)(x² - x + 1) - x(x + 1)

= (x + 1)(x² - x + 1 - x)

= (x + 1)(x² - 2x + 1)

= (x + 1)(x - 1)²

k) (x + y)³ - x³ - y³

= (x + y)³ - (x³ + y³)

= (x + y)³ - (x + y)(x² - xy + y²)

= (x + y)[(x + y)² - x² + xy - y²]

= (x + y)(x² + 2xy + y² - x² + xy - y²)

= (x + y).3xy

= 3xy(x + y)