Cho a + b + c = 3. Cmr : \(a^2+b^2+c^2\ge3\)
cho a,b,c>0,a+b+c=3
CMR P=\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge3\)
Ta có: \(a+b+c=3\)
Áp dụng BĐT Cauchy - Schwarz ta có:
\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)
\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\cdot\left(a+b+c\right)}\)
\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{3^2}{2\cdot3}=\dfrac{3}{2}\)
__________________
Nhắc lại BĐT Cauchy - Schwarz:
\(\dfrac{x^2_1}{a_1}+\dfrac{x^2_2}{a_2}+\dfrac{x^2_3}{a_3}+...+\dfrac{x^2_n}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\)
(p/s: bạn xem lại để nhé !)
Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)
Áp dụng bđt cosi schwart ta có:
`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`
Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`
`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`
Dấu "=" `<=>a=b=c=1.`
Cho a+b+c+ab+bc+ca=6. Cmr \(a^2+b^2+c^2\ge3\)
Với mọi số thực x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
Do đó:
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
Cộng vế với vế:
\(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c là 3 cạnh 1 tam giác. CMR: \(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge3\)
Đặt \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\)
vì a,b, c là độ dài 3 cạnh của 1 tam giác => \(\hept{\begin{cases}b+c>a\\c+a>b\\a+b>c\end{cases}}\Leftrightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}\Rightarrow x,y,z>0}\)
và \(\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{x+y}{2}\\a=\frac{y+z}{2}\\b=\frac{x+z}{2}\end{cases}}\Rightarrow\frac{a}{b+c-a}=\frac{\frac{y+z}{2}}{x}=\frac{y+z}{2x}}\)
Tương tự: \(\hept{\begin{cases}\frac{b}{c+a-b}=\frac{x+z}{2y}\\\frac{c}{a+b-c}=\frac{x+y}{2z}\end{cases}}\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(=\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)
\(=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)
\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{2}\left(2+2+2\right)\) vì \(\hept{\begin{cases}\frac{y}{x}+\frac{x}{y}\ge2\\\frac{z}{x}+\frac{x}{z}\ge2\\\frac{y}{z}+\frac{z}{y}\ge2\end{cases}}\)
Dấu "=" khi và chỉ khi \(\hept{\begin{cases}\frac{y}{x}=\frac{x}{y}\\\frac{z}{x}=\frac{x}{z}\\\frac{y}{z}=\frac{z}{y}\end{cases}}\) và x,y,z>0
<=> x=y=z
=> a+b-c=c+a-b = a+b-c
<=> a+b+c-2a=a+b+c-2b=a+c+c-2c
<=> a=b=c
Cho a, b, c > 0 và \(a^2+b^2+c^2=3\)
CMR: \(a^3+b^3+c^3\ge3\)
Bài này có gì khó đâu nhỉ?
Ta có: \(2a^3+1=a^3+a^3+1\ge3\sqrt[3]{a^6}=3a^2\)
Tương tự:\(2b^3+1\ge3b^2;2c^3+1\ge3c^2\)
Cộng theo vế 3 BĐT trên: \(2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)
Suy ra \(a^3+b^3+c^3\ge3^{\left(dpcm\right)}\)
Đẳng thức xảy ra khi a = b = c = 1
Cho các số thực dương a,b,c thỏa mãn abc =1 .CMR
\(\dfrac{3+a}{\left(1+a\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Bài này đã có ở đây:
Cho các số thực dương a,b,c thỏa mãn abc =1 .CMR
\(\dfrac{3+a}{\left(1+a\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Cho các số thực dương a,b,c thỏa mãn abc=1 CMR:
\(\dfrac{3+a}{\left(a+1\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Cho các số dương a, b, c thỏa mãn: a+b+c=3 và \(M=\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\). CMR: \(M\ge3\sqrt{5}\)
\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)
\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)
\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)
\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)
Cách khác:
Áp dụng BĐT Bunhiacopxky:
$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$
$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$
Tương tự với các căn thức còn lại và cộng theo vế:
$M\sqrt{5}\geq 5(a+b+c)$
$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$