Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bích Diệp
Xem chi tiết
Hoangnguyen Nguyen Hoang...
Xem chi tiết
Moon Light
12 tháng 8 2015 lúc 15:33

Áp dụng BĐT cô-si cho 2 số không âm ta có:

\(x^2+1\ge2x\)

Dấu "="xảy ra <=>x=1

Tương tự ta có:y2+4>4y

z2+9>6z

Dấu = xảy ra <=>y=2 z=3

=>(x2+1)(y2+4)(z2+9)>2x.4y.6z=48xyz

=>(x2+1)(y2+4)(z2+9)=48xyz

<=>x=1 y=2 z=3

Flowey
Xem chi tiết
Thắng Nguyễn
19 tháng 2 2017 lúc 8:43

x=y+1=z+2=1

Suy ra A=...

Thắng Nguyễn
19 tháng 2 2017 lúc 21:39

viết sai r`, cho sửa lại

x=1; y=2; z=3 

Cường Nguyễn
Xem chi tiết
Cường Nguyễn
Xem chi tiết
Nguyễn Cường
2 tháng 12 2017 lúc 0:33

Áp dụng Cauchy:

\(\left(x^2+1\right)\ge2\sqrt{x^2\cdot1}=2x\)(dấu = khi x=1)

\(\left(y^2+4\right)\ge2\sqrt{y^2\cdot4}=4y\)(dấu = khi y=2)

\(\left(z^2+9\right)\ge2\sqrt{z^2\cdot9}=6z\)(dấu = khi z=3)

\(\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\)(dấu = khi x=1, y=2, z=3)

ĐK đề bài => x=1, y=2, z=3. Thay x, y, z vào tính được P.

phan gia huy
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 20:16

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

Anh Phạm
Xem chi tiết
Akai Haruma
7 tháng 1 2022 lúc 22:28

Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.

Áp dụng BĐT AM-GM:

$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$

Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:

$x^3=x^2+x+2$

$\Leftrightarrow x^3-x^2-x-2=0$

$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$

$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$

$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$

Nalumi Lilika
Xem chi tiết
Hồng Phúc
14 tháng 2 2021 lúc 10:00

\(\left\{{}\begin{matrix}\left(x+1\right)\left(x^2+1\right)=y^3+1\\\left(y+1\right)\left(y^2+1\right)=z^3+1\\\left(z+1\right)\left(z^2+1\right)=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+x^2+x=y^3\left(1\right)\\y^3+y^2+y=z^3\\z^3+z^2+z=x^3\end{matrix}\right.\)

Giả sử \(x>y\Rightarrow x^3+x^2+x>y^3+y^2+y\)

\(\Rightarrow y^3>z^3\Leftrightarrow y>z\left(2\right)\)

\(\Rightarrow y^3+y^2+y>z^3+z^2+z\Rightarrow z>x\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow y>x\) (Vô lí)

Giả sử \(x< y\Rightarrow x^3+x^2+x< y^3+y^2+y\)

\(\Rightarrow y^3< z^3\Leftrightarrow y< z\left(4\right)\)

\(\Rightarrow y^3+y^2+y< z^3+z^2+z\Rightarrow z< x\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow y< x\) (Vô lí)

\(\Rightarrow x=y=z\)

\(\left(1\right)\Leftrightarrow x^3+x^2+x=x^3\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow x=y=z=0\) hoặc \(x=y=z=-1\)