Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Ngọc Hiếu
Xem chi tiết
Blue diamon
13 tháng 4 2017 lúc 20:49

các bạn ơi giúp nhanh nha mình đang cần rất gấp

Nguyễn Đức Thịnh
Xem chi tiết
Đặng Tiến Dũng
Xem chi tiết
Đỗ Lê Tú Linh
9 tháng 6 2015 lúc 11:13

\(\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}}{500-\frac{500}{501}-\frac{501}{502}-...-\frac{999}{1000}}=\frac{\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)}{500-\left(1-\frac{1}{501}\right)-\left(1-\frac{1}{502}\right)-...-\left(1-\frac{1}{1000}\right)}\)

hình như cái mẫu bạn ghi dấu sai thì phải, còn tử thì mình lười làm lắm

tử bạn tính ra 1/2+1/12+...+1/999 000 sau đó phân tích ra là

thanh trúc
9 tháng 6 2015 lúc 11:09

khó thật

nhớ L-I-K-E nhe tại vì cậu bảo giúp mình, mình cho đúng liền

bui thi hue
Xem chi tiết
bảo nam trần
6 tháng 4 2017 lúc 14:41

Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\)

\(\dfrac{1}{502}< \dfrac{1}{500}\)

\(\dfrac{1}{503}< \dfrac{1}{500}\)

..................

\(\dfrac{1}{1000}< \dfrac{1}{500}\)

\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{1}{500}+\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)

\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{500}{500}=1\)

Vậy \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< 1\)

Minh Anh Đặng Thị
6 tháng 4 2017 lúc 14:42

Đặt A = \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}\)

Ta thấy A có 500 phân số.

Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\\ \dfrac{1}{502}< \dfrac{1}{500}\)

....................

\(\dfrac{1}{1000}< \dfrac{1}{500}\)

\(\Rightarrow\) A< \(\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)( có 500 phân số \(\dfrac{1}{500}\))

\(\Rightarrow A< 500.\dfrac{1}{500}\\ \Rightarrow A< \dfrac{500}{500}\\ \Rightarrow A< 1\)

Chắc là bạn hiểu chứ ?

Nam Nguyễn
6 tháng 4 2017 lúc 14:58

Giải:

Trước hết, chúng ta cứ đặt tên cho dãy là A chẳng hạn (cho cách trình bày ngắn hơn ý mà!), rồi chúng ta làm tiếp nhé!!!

Ta có: Số phân số của dãy A là: (1000 - 501) + 1 = 500 (phân số).

\(\dfrac{1}{501}< \dfrac{1}{500}.\)

\(\dfrac{1}{502}< \dfrac{1}{500}.\)

.....................

\(\dfrac{1}{1000}< \dfrac{1}{500}.\)

\(\Rightarrow A< \left(\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\right).\)(với 500 số hạng 500).

\(\Rightarrow A< 500.\dfrac{1}{500}.\)

hay \(A< \dfrac{500}{500}=1.\)

Vậy ta thu được ĐPCM.

CHÚC BN HỌC TỐT!!! ^ - ^

Đừng quên bình luận nếu bài mik sai nha!!!hahaha

Còn nếu bài mik đúng thì nhớ tick mik để mik lấy SP nha!!!hahahahahaha

pth
Xem chi tiết
Phạm Chi Lan
Xem chi tiết
Nguyễn Hưng Phát
3 tháng 3 2018 lúc 17:53

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{999}-\frac{1}{1000}\)

\(=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{999}+\frac{1}{1000}-2\left(\frac{1}{2}+\frac{1}{4}+......+\frac{1}{1000}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{999}+\frac{1}{1000}-1-\frac{1}{2}-......-\frac{1}{500}\)

\(=\frac{1}{501}+\frac{1}{502}+.......+\frac{1}{1000}\)

\(\Rightarrowđpcm\)

Nguyễn hải lâm
Xem chi tiết
do huong giang
Xem chi tiết
Phạm Nguyễn Tất Đạt
23 tháng 3 2018 lúc 17:59

a)Đặt \(A=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)

\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)

\(A=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)

\(A=\dfrac{1}{3}-\dfrac{1}{12}\)

\(A=\dfrac{1}{4}\)

b)Đặt \(B=\dfrac{1}{501}+\dfrac{1}{502}+...+\dfrac{1}{1000}\)(có 500 số hạng)

\(B< \dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)(có 500 số hạng)

\(B< 500\cdot\dfrac{1}{500}=1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

Phạm Chi Lan
Xem chi tiết