a)\(\frac{xy+3y}{xy}\)
b)\(\frac{x^2+3x-y^2-3y}{x^2-y^2}\)
c) \(\frac{-3x+3y}{x-y}\)
giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình
\(a.\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}\)
\(b.\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=-5y-9+xy\)
\(c.\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=xy-y-x\)
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
Thực hiện phép tính: \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}\)
tìm x , y , z biết
a, 3x=4y , 3y =5z và x - y - z=1
b, \(\frac{x}{2}=\frac{y}{7}=\frac{5}{z}\) và yz - xy - z2 = 72
c, \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}\) và 2x2 + xy - xz = 54
d, \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}\) và 2x - 3y - z = -26
a) Ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)
Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\) và \(x-y-z=1.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)
Chúc bạn học tốt!
a) giải hệ phương trình
\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}=\frac{5}{2}\end{cases}}\)
b) giải pt \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
c) tìm nghiệm nguyên dương của pt x3y+xy3-3x2-3y2=17
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
c) \(x^3y+xy^3-3x^2-3y^2=17\)
\(\Leftrightarrow xy\left(x^2+y^2\right)-3\left(x^2+y^2\right)=17\Leftrightarrow\left(x^2+y^2\right)\left(xy-3\right)=17\)
\(\Leftrightarrow\left(x^2+y^2\right),\left(xy-3\right)\inƯ\left(17\right)\)
Do \(x^2+y^2\ge0\Rightarrow x^2+y^2\in\left\{1;17\right\}\)
TH1: \(\hept{\begin{cases}x^2+y^2=1\\xy-3=17\end{cases}}\Rightarrow\hept{\begin{cases}\frac{400}{y^2}+y^2=1\\x=\frac{20}{y}\end{cases}}\) (vô nghiệm)
TH2: \(\hept{\begin{cases}x^2+y^2=17\\xy-3=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{16}{y^2}+y^2=17\\x=\frac{4}{y}\end{cases}}\)
Ta có bảng:
y2 | 16 | 16 | 1 | 1 |
y | 4 | -4 | 1 | -1 |
x | 1 | -1 | 4 | -4 |
Vậy các cặp số nguyên thỏa mãn là (x;y) = (1;4) ; (-1;-4) ; (4;1) ; (-4;-1).
1 cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
CM: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
2 Giải hệ pt
\(\left\{{}\begin{matrix}x^2+y^2-xy=5\\x^3+y^3=5x+15y\end{matrix}\right.\)
Bài 1:
Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
\(P=\frac{1}{2a+b+c}+\frac{1}{a+b+2c}+\frac{1}{a+2b+c}\)
\(P=\frac{1}{a+a+b+c}+\frac{1}{a+b+c+c}+\frac{1}{a+b+b+c}\)
\(\Rightarrow P\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{6}{4}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{4}\)
Bài 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\\left(x+y\right)\left(x^2+y^2-xy\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\5\left(x+y\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow10y=0\Rightarrow y=0\)
Thay vào pt đầu: \(x^2=5\Rightarrow x=\pm\sqrt{5}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\sqrt{5};0\right);\left(-\sqrt{5};0\right)\)
cho x,y>0 và xy=1. Tim GTLN A=x^2+3x+y^2+3y+\(\frac{9}{x^2+y^2+1}\)
a. \(\left\{{}\begin{matrix}x^2-3x+2y=2\\2x^2+y-x=3\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x^2+y^2+xy-3y=4\\2x-3y+xy=3\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}x^2-2y^2-xy-2x+7y-3=0\\x^2+y^2-x+y=0\end{matrix}\right.\)
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6