Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bảo Ngọc
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Cỏ dại
Xem chi tiết
Cỏ dại
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
25 tháng 9 2023 lúc 16:41

Tham khảo:

Gọi O là giao điểm của AC và BD.

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\), ta có:

\(\begin{array}{l}{S_{OAD}} = \frac{1}{2}.OA.OD.\sin \alpha ;\quad {S_{OBC}} = \frac{1}{2}.OB.OC.\sin \alpha ;\\{S_{OAB}} = \frac{1}{2}.OA.OB.\sin ({180^o} - \alpha );\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin ({180^o} - \alpha ).\end{array}\)

Mà \(\sin ({180^o} - \alpha ) = \sin \alpha \)

\( \Rightarrow {S_{OAB}} = \frac{1}{2}.OA.OB.\sin \alpha ;\quad {S_{OCD}} = \frac{1}{2}.OD.OC.\sin \alpha .\)

\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \left( {{S_{OAD}} + {S_{OAB}}} \right) + \left( {{S_{OBC}} + {S_{OCD}}} \right)\\ = \frac{1}{2}.OA.\sin \alpha .(OD + OB) + \frac{1}{2}.OC.\sin \alpha .(OB + OD)\\ = \frac{1}{2}.OA.\sin \alpha .BD + \frac{1}{2}.OC.\sin \alpha .BD\\ = \frac{1}{2}.BD.\sin \alpha .(OA + OC)\\ = \frac{1}{2}.AC.BD.\sin \alpha  = \frac{1}{2}.x.y.\sin \alpha .\end{array}\)

b) Nếu \(AC \bot BD\) thì \(\alpha  = {90^o} \Rightarrow \sin \alpha  = 1.\)

\( \Rightarrow {S_{ABCD}} = \frac{1}{2}.x.y.1 = \frac{1}{2}.x.y.\)

Quỳnh Như
Xem chi tiết
NTP-Hoa(#cđln)
14 tháng 7 2018 lúc 21:41

Xét tứ giác ABCD 

Ta có:AD=BC và AC=BD(gt)

-> tứ giác ABCD là hính thang cân (t/c hình thang cân)

Việt Hoàng ( Tiếng Anh +...
18 tháng 9 2018 lúc 19:47

bạn tự vẽ hình nhé

Xét tứ giác ABCD 

Ta có:AD=BC và AC=BD(gt)

-> tứ giác ABCD là hính thang cân (t/c hình thang cân)

ĐỖ THỊ HÀ LINH
Xem chi tiết
『 ՏɑժղҽՏՏ 』ILY ☂ [ H M...
29 tháng 7 2021 lúc 8:11

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2018 lúc 13:32


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 5 2017 lúc 8:08

Phương pháp:

Sử dụng các công thức diện tích tam giác  và công thức Cosin

Cách giải:

Ta có: 

Gọi I là tâm đường tròn ngoại tiếp tam giác BCD.

Do AB = AC = AD 

Thể tích tứ diện ABCD là 

Chọn D.