Cho hình vuông ABCD có A(0;4). Gọi M là trung điểm AD, BM có phương trình: 4x-7y+15=0
1. Tính độ dài cạnh hình vuông
2. Tìm tọa độ B biết B có hoành độ âm
3. Tìm tọa độ C,D
Mng giúp em với ạ!!!
Cho hình vuông ABCD biết A(0;2), BC: x -2y-1=0 và điểm C có hoành độ dương. Tìm tọa độ tâm N của hình vuông ABCD.
Do ABCD là hình vuông \(\Rightarrow AB=d\left(A;BC\right)=\dfrac{\left|0-2.2-1\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\)
\(\Rightarrow AC=AB\sqrt{2}=\sqrt{10}\)
Do C thuộc BC \(\Rightarrow C\left(2c+1;c\right)\) \(\Rightarrow\overrightarrow{AC}=\left(2c+1;c-2\right)\)
\(\Rightarrow AC^2=\left(2c+1\right)^2+\left(c-2\right)^2=10\)
\(\Leftrightarrow5c^2-5=0\Rightarrow\left[{}\begin{matrix}c=1\\c=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}C\left(3;1\right)\\C\left(-1;-1\right)\end{matrix}\right.\)
Do C có hoành độ dương \(\Rightarrow C\left(3;1\right)\)
N là trung điểm AC \(\Rightarrow N\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)
cho hình vuông ABCD có cạnh AD=3a với a<0, a thuộc R. Tính theo a diện tích xung quanh và thể tích của hình trụ tạo bởi hình vuông ABCD quay quanh đường thẳng MN
độ dài cạnh phải luôn dương chứ, a>0 chứ bạn
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại A và B, Kẻ \(SA\) vuông góc với \(mp\left(ABCD\right)\). Biết rằng \(AB=BC=a\), \(AD=2a\) góc giữa \(SB\) và \(mp\left(ABCD\right)\) bằng \(45^0\)
a) Chứng minh rằng BC vuông góc với SB, và \(mp\left(SCD\right)\perp mp\left(SAC\right)\)
b) Gọi \(mp\left(\alpha\right)\) là mặt phẳng đi qua A và vuông góc với SC. Xác định thiết diện của hình chóp \(S.ABCD\) và \(mp\left(\alpha\right)\). Tính diện tích của thiết diện đó theo \(a\).
P/s: Em xin nhờ quý thầy cô giáo và các bạn yêu toán trên toàn quốc giúp em ý b với ạ
Em cám ơn nhiều lắm ạ!
Câu 2: cho hình chóp S.ABCD có đáy là hình vuông, AB giao BD=0. SO vuông góc với (ABCD). a; Chứng minh AC vuông góc (SBD) b; Chứng minh AC vuông góc SB
Cho hình thang vuông ABCD (AB // CD) có \(\widehat{A}=\widehat{D}=90^0,\widehat{B}=60^0,CD=30cm,CA\perp CB\) . Tính diện tích của hình thang ABCD.
Cho hình thang vuông ABCD có đường cao AB=2a (a>0), đáy nhỏ AD=a, đáu lớn BC=4a. CMR: AC vuông góc BD
Câu 1: Cho hình vuông ABCD . Khẳng định sai là:
A. Hình vuông ABCD có bốn cạnh bằng nhau : AB = BC = CD = DA .
B. Hình vuông ABCD có bốn góc ở đỉnh: A,B,C,D bằng nhau.
C. Hình vuông ABCD có hai đường chéo bằng nhau: AC = BD .
D. Hình vuông ABCD có hai cặp cạnh đối song song: AB và BC ; CD và DA .
Câu 2: Một hình vuông có diện tích là 144 cm2 . Độ dài cạnh của hình vuông là:
A. 10 cm B. 12 cm C. 36 cm D. 24 cm
Câu 3: Hình vuông ABCD có chu vi là 20 cm . Diện tích của hình vuông ABCD là:
A. 100 cm2 B. 16 cm2 C. 36 cm2 D. 25 cm2
Câu 4: Một căn phòng hình vuông có diện tích 16 m2 được lát nền bởi các viên gạch loại 50 x 50 cm . Số gạch tối thiểu để lát nền căn phòng là:
A. 8 viên gạch. B. 16 viên gạch. C. 32 viên gạch. D. 64 viên gạch.
Câu 5: Số tự nhiên x là bội của 4 và thỏa mãn 24<x<30 . Số x là:
A. 28. B. 26. C. 24. D. 27.
Câu 6: Một đội y tế có 24 bác sĩ và 108 y tá. Có thể chia đội y tế đó nhiều nhất thành mấy tổ để các bác sĩ cũng như các y tá được chia đều vào mỗi tổ (số lượng bác sĩ và y tá của mỗi tổ là như nhau)?
A. 12. B. 6. C. 24. D. 18.
Câu 7: Một căn phòng hình chữ nhật có chiều dài là 680 cm và chiều rộng là 480 cm . Người ta muốn lát kín căn phòng đó bằng gạch hình vuông mà không có viên gạch nào bị cắt xén. Độ dài cạnh viên gạch lớn nhất có thể lát là:
A. 30 cm B. 20 cm C. 40 cm D. 60 cm
Cho hình thang vuông ABCD có góc A= B=900,AB=BC=AD/2
a,Tính các góc của hình thang .
b,Chứng minh AC vuông góc với CD
c,Tính chu vi hình thang ABCD nếu AB=3cm.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm 0; cạnh bên SA vuông góc với mặt phẳng (ABCD) và SA=a. Gọi M,N lần lượt là trung điểm của SD và BC. Tính khoảng cách từ điểm M đến mặt phẳng (SBC)
Cho hình chóp S ABCD . có đáy là hình thoi cạnh a, hình chiếu vuông góc của S trên mặt
phẳng ABCD là trung điểm cạnh = AB ABD=60 và SC hợp với đáy một góc 0 60 . Tính
thể tích V của khối chóp S ABCD
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(\Rightarrow\) CH là hình chiếu vuông góc của SC lên (ABCD)
\(\Rightarrow\widehat{SCH}=60^0\)
Do \(\widehat{ABD}=60^0\Rightarrow\) các tam giác ABD và BCD là tam giác đều cạnh a
\(\Rightarrow\widehat{ABC}=120^0\)
Áp dụng định lý hàm cos cho tam giác BCH:
\(CH=\sqrt{BC^2+BH^2-2BC.BH.cos120^0}=\dfrac{a\sqrt{7}}{2}\)
\(\Rightarrow SH=CH.tan60^0=\dfrac{a\sqrt{21}}{2}\)
\(V=\dfrac{1}{3}SH.2S_{ABD}=\dfrac{1}{3}.\dfrac{a\sqrt{21}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{7}}{8}\)