Cho 3 số a,b,c thỏa mãn \(-1\le a,b,c\le2\) và a+b+c=0
Chứng minh rằng \(ab+bc+ca\ge-3\)
Cho 3 số thực a,b,c thỏa mãn:\(1\le a\le2;1\le b\le2;1\le a\le2\).Chứng minh rằng \(a^2+b^2+c^2+ab+bc+ca+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)^3\)
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)
Theo đề bài ta có
\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)
Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)
Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)
Khi đó BĐT <=>
\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)
<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)
Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)
Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)
Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)
Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)
\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Ta lại có
\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)
Tương tự \(b^2\le3b-2;c^2\le3c-2\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)
\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)
Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)
\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)
Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)
\(-\left[4\left(a+b+c\right)-12\right]=0\)
\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\le a^2+b^2+c^2+ab+bc+ca\)
hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)
cho a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) chứng minh rằng \(\dfrac{a}{ab+3}+\dfrac{b}{bc+3}+\dfrac{c}{ca+3}\le\dfrac{3}{4}\)
Cho a,b,c thỏa mãn 1\(\ge\)a,b,c\(\ge\)0. chứng minh rằng \(a+b^2+c^3-ab-bc-ca\le1\)
\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)
\(\Rightarrow a+b^2+c^3\le a+b+c\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
=> đpcm
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\). Chứng minh rằng \(a+b+c\ge ab+bc+ca\)
\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\)
\(\Leftrightarrow2\ge\dfrac{a+b}{a+b+1}+\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}=\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+a+b}+\dfrac{\left(b+c\right)^2}{\left(b+c\right)^2+b+c}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)^2+c+a}\)
\(\Rightarrow2\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca+a+b+c}\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+2\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)
\(\Rightarrow\)đpcm
Cho a, b, c thõa mãn \(0\le a,b,c\le2\) và \(a+b+c=3\)
Chững minh \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge\sqrt{2}\)
Cho 3 số a,b,c >0 thỏa mãn ab+bc+ca=1
Chứng minh rằng:\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
https://olm.vn/hoi-dap/detail/239526218296.html
Sử dụng phân tích tuyệt vời của Ji Chen:
\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Hãy xem phương pháp Buffalo-Way giải quyết nó!
Viết BĐT lại thành: \(\left(ab+bc+ca\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\ge\frac{25}{4}\)
Giả sử \(a\ge b\ge c\) và đặt \(a=c+u+v,b=c+v\left(u,v\ge0\right)\). Sau khi quy đồng, bất đẳng thức trở thành:
128 c^6+4 u^5 v+19 u^4 v^2+30 u^3 v^3+15 u^2 v^4+c^5 (256 u+512 v)+c^4 (192 u^2+832 u v+832 v^2)+c^3 (96 u^3+528 u^2 v+1008 u v^2+672 v^3)+c^2 (40 u^4+224 u^3 v+488 u^2 v^2+528 u v^3+264 v^4)+c (8 u^5+60 u^4 v+152 u^3 v^2+168 u^2 v^3+100 u v^4+40 v^5) \(\ge0\) (hiển nhiên đúng)
P/s: Khúc cuối dài quá gõ công thức bị tràn hết màn hình nên đành gõ ngoài, thông cảm! Nhớ bài này có một cách dùng dồn biến mà nghĩ không ra.
cho ba số a,b,c thỏa mãn \(0\le a,b,c\le2\)và \(a+b+c=3\)Chứng minh rằng : \(a^3+b^3+c^3\le9\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
#Toán lớp 9