Cho x>0, y>0 thỏa mãn xy=6. Tìm GTNN của biểu thức Q= 2/x +3/y + 6/3x+2y
Cho x>0,y>0 thỏa mãn x+y>=6. Hãy tính GTNN của biểu thức:
M=3x + 2y+ 6/x + 8/y
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
Cho x>0 , y>0 thõa mãn xy = 6. Tìm GTNN của biểu thức :
\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\)
Câu trả lời trước bị sai nên làm lại.
Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6
Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12
Theo bđt cô si và t \(\ge\)12 ta được :
Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)
Đẳng thức xảy ra <=> x=2 và y=3
\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)
Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được
\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)
Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6
<=> x=2,y=3
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)
\(\Rightarrow P\ge x+2y+3z-3\)
\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)
\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài 5 Cho x, y là các số thực thỏa mãn x^2 + y^2 + xy 3x 3y + 3=0. Chứng minh biểu thức P = (3x +2y 6)^1010 + ( xy+1)^1011 + 2021 có giá trị là một số nguyên.
Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))
Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0
=>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0
=> (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0
=> (x-1)2 + (y-1)2 + [(-x+ xy) + (-y+1)] = 0
=> (x-1)2 + (y-1)2 + [ x(y-1) - (y-1)] = 0
=> (x-1)2 + (y-1)2 + (x-1)(y-1) = 0
=> (x-1)2 + 2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0
=> [x-1+1/2(y-1) ]2 + 3/4.(y-1)2 = 0
Vì: [x-1+1/2(y-1) ]2 >= 0 với mọi x;y thuộc R
3/4.(y-1)2 >= 0 với mọi y thuộc R
=> (x-1+1/2y -1/2 = 0) và ( y-1 = 0)
=> (x = 1/2 -1/2y+1) và (y=1)
=> x = y =1
Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.
Cho x>0,y>0 thỏa mãn x+y \(\ge\)6. Tìm giá trị nhỏ nhất của biểu thức
P=3x+2y+\(\frac{6}{x}+\frac{8}{y}\)
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(P=\frac{3}{2}\left(x+y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(\ge\frac{3}{2}.6+2\sqrt{\frac{3x}{2}.\frac{6}{x}}+2\sqrt{\frac{8}{y}.\frac{y}{2}}=9+6+4=19\)
\("="\Leftrightarrow x=2;y=4\)
các bạn biết ronaldo là ai không ?
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Cho hai số thực x, y thỏa mãn log 3 x + y x 2 + y 2 + x y + 2 = x x - 3 + y y - 3 + x y . Tìm giá trị lớn nhất của biểu thức P = x + 2 y + 3 x + y + 6
Cho x,y là số thực thỏa mãn \(x^2+y^2+xy-3x-3y+3=0\). Chứng minh biểu thức P = \(\left(3x+2y-6\right)^{1010}+\left(x-y+1^{1011}\right)+2021\) có giá trị là một số nguyên
Xét các số thực dương x, y thỏa mãn log 3 x + y x 2 + y 2 + x y + 2 = x(x - 3) + y(y - 3) + xy. Tìm giá trị Pmax của biểu thức P = 3 x + 2 y + 1 x + y + 6
A. Pmax = 0
B. Pmax = 2
C. Pmax = 1
D. Pmax = 3
Đáp án C
Phương pháp:
- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.
Cách giải:
<=>
(2)
Đặt
=> f(t) đồng biến trên (0;+∞)
<=>
<=>
Khi đó,
vì
Vậy Pmax = 1 khi và chỉ khi