Đây là 3 phân số đầu tiên của 1 dãy các phân số : 9/64; 7/64; 5/64;.... tron đó kể từ phân số thứ 2 các phân số đều bắn phân số đứng ngay trước nó cộng với -1/32. Vậy 3 phân số tieps theo của dãy số là:
- Dãy số: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 (1)
- Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: Với mỗi số tự nhiên \(n \ge 1,{u_n}\) là số thập phân hữu hạn có phần số nguyên là 1 và phần thập phân là n chữ số thập phân đầu tiên đứng sau “,” của số \(\sqrt 2 \). Cụ thể là:
\({u_1} = 1,4;{u_2} = 1,41;{u_3} = 1,414;{u_4} = 1,4142;{u_5} = 1,41421;...\left( 2 \right)\)
- Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 2} \right)^n}\) (3)
- Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \({u_1} = 1\) và \({u_n} = {u_{n - 1}} + 2\) với mọi \(n \ge 2\,\,\left( 4 \right)\)
a) Hãy nêu cách xác định mỗi số hạng của lần lượt các dãy số (1), (2), (3), (4)
b) Từ đó hãy cho biết dãy số có thể cho bằng những cách nào.
a) Cách xác định mỗi số hạng của dãy số:
(1) : Liệt kê
(2) : Nêu cách xác định của mỗi số hạng trong dãy số
(3) : Nêu số hạng tổng quát
(4) : Truy hồi
b) Dãy số có thể cho bằng những cách sau:
- Liệt kê số hạng của dãy số
- Diễn đạt bằng lời cách xác định mỗi số hạng của dãy số
- Cho công thức của số hạng tổng quát
- Truy hồi
Cho dãy số 1 .,5 .,9 .,13...
A)nêu quy luật của dãy số trên
B)viết tập hợp B các phân tử là 10 số hạng đầu tiên của dãy số . Tính tổng dãy số trên
a, khoảng cách mỗi số là 4
b, 1; 5; 9; 13; 17; 21; 25; 29; 33; 37
Tổng dãy trên là:
( 37 + 1 ) . [ ( 37 - 1 ) : 4 + 1 ] : 2 = 190
Qui luật về cái gì mình không hiểu bạn?
Cho dãy số 4/3; 9/8; 16/1; 25/24; 36/35
Gọi S là tích của 100 số đầu tiên của dãy.
Khi đó 51S =
(Nhập kết quả dạng phân số tối giản)
S = \(\dfrac{4}{3}\).\(\dfrac{9}{8}\).\(\dfrac{16}{15}\).\(\dfrac{25}{24}\).\(\dfrac{36}{35}\)....
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)...
Phân số thứ 100 của dãy số trên là: \(\dfrac{101^2}{100.102}\)
Tích của 100 số đầu tiên của dãy trên là:
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)....\(\dfrac{101^2}{100.102}\)
S = \(\dfrac{\left(1.2.3...100.101\right)\times\left(2.3.4.5...101\right)}{\left(1.2.3.4...100\right)\times\left(3.4.5....101.102\right)}\)
S = \(\dfrac{101.2}{1.102}\)
S = \(\dfrac{101}{51}\)
S x 51 = \(\dfrac{101}{51}\) x 51 = 101
Cho dãy số 4/3; 9/8; 16/15; 25/24; 36/35; ... Gọi S là tích của 100 số đầu tiên của dãy. Khi đó 51 * S = ???
(Nhập kết quả dưới dạng phân số tối giản )
\(S=\frac{2^2}{2^2-1}\times\frac{3^2}{3^2-1}\times...\times\frac{100^2}{100^2-1}\times\frac{101^2}{101^2-1}\)
\(=\frac{\left(2\times3\times4\times...\times101\right)\times\left(2\times3\times4\times...\times101\right)}{\left(1\times2\times3\times...\times100\right)\times\left(3\times4\times5\times...\times102\right)}\)
\(=\frac{101\times2}{1\times102}=\frac{101}{51}\)
\(51\times S=101\)
Cho các dãy phân số \(\frac{1}{2},\frac{1}{6},\frac{1}{12},\frac{1}{20}........\) a, Nêu quy luật viết dãy phân số trên b, Tính nhanh tổng 10 số hạng đầu tiên của dãy phân số
Qui luật là thế này nha em : 1/1x2 ;1/2*3;1/3*4 ,....
Cái tính tổng thì tách 1/2=1-1/2 ;1/6=1/2-1/3;1/12=1/3-1/4 tương tự đi cộng lại là ra
Quy luật của dãy là:1/2,1/6,1/12,1/20=1/1x2,1/2x3,1/3x4,1/4x5
Cho dãy các phân số : 1/3.7 ; 1/7.11 ; 1/11.15 ; ... Tính tổng 60 số hạng đầu tiên của dãy số
Có một dãy số với hai số hạng đầu tiên là 64 và 36 , mỗi số hạng tiếp theo là trung bình cộng của tất cả các số hạng trước đó , hãy tìm tổng của 2020 số hạng đầu tiên
Số hạng thứ 3 là: (64 + 36) : 2 = 50
Số hạng thứ 4 là: (64 + 36 + 50) : 3 = 50
Vì là trung bình cộng nên các số sau khi cộng vào rồi chia vẫn sẽ được số hạng thứ 3 (50)
=> Tổng của 2020 số hạng đầu tiên là:
64 + 36 + 50 . 2018 = 101000
Đáp số: 101000
#Shinobu Cừu
Tổng 2 số hạng đầu là: 64 + 56 = 100 = 2 x 50
Số hạng thứ 3 là: 2 x 50 : 2 = 50
Số hạng thứ 4 là: ( 2 x 50 + 50 ) : 3 = ( 3 x 50 ) : 3 = 50
Số hạng thứ 5 là: ( 4 x 50 ) : 4 = 50
Số hạng thứ 6 là: ( 5 x 50) : 5 = 50
.....
Số hạng thứ 2020 là: ( 2019 x 50 ) : 2019 = 50
Tổng của 2020 số hạng đầu tiên là: 2020 x 50 = 101 000
Đáp số:...
cho dãy phân số: 1/1x4, 1/4x7, 1/7x10,...
a) tìm phân số thứ 30 trong dãy
b) tính tổng của 30 phân số đầu tiên
a)Quy luật : \(\frac{1}{\left[\left(n-1\right)\cdot3+1\right]\left(3n+1\right)}\) ( n là vị trí của dãy phân số trên )
Phân số thứ 30 là : \(\frac{1}{\left[\left(30-1\right)\cdot3+1\right]\left(3\cdot30+1\right)}=\frac{1}{8008}\)
b) Ta có tổng sau : \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{88\cdot91}\)
\(3A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{88\cdot91}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{88}-\frac{1}{91}\)
\(3A=1-\frac{1}{91}=\frac{90}{91}\)
\(A=\frac{90}{91}\div3=\frac{30}{91}\)
Vậy tổng của 30 phân số đầu tiên trong dãy trên là \(\frac{30}{91}\)
làm đúng mà dis hoài
bực ơi là bực
ai dis hả khai mau tui dis lại ko chừa 1 phát nào
Tìm số hạng đầu tiên của các dãy số sau : . . . , 64, 81, 100
Tương tự như trên ta rút ra quy luật của dãy là : Mỗi số hạng bằng số thứ tự nhân số thứ tự của số hạng đó.
Vậy số hạng đầu tiên của dãy là :
1 x 1 = 1