Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
^thaothao^
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2022 lúc 22:38

\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\)

\(\Rightarrow sina=-\sqrt{1-cos^2a}=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)

\(\Rightarrow sin2a=2sina.cosa=2.\left(-\dfrac{4}{5}\right).\left(\dfrac{3}{5}\right)=-\dfrac{24}{25}\)

Câu sau có nhầm đề ko nhỉ?

\(sin\left(\pi-\dfrac{\pi}{3}\right)=sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)

Bé Poro Kawaii
Xem chi tiết
Akai Haruma
10 tháng 5 2021 lúc 23:00

Lời giải:

$\sin ^2a+\cos ^2a=1$

$\cos ^2a=1-\sin ^2a=1-(\frac{-5}{13})^2=\frac{144}{169}$

Vì $\pi < a< \frac{3\pi}{2}$ nên $\cos a< 0$

Do đó: $\cos a=-\sqrt{\frac{144}{169}}=\frac{-12}{13}$

$\sin 2a=2\sin a\cos a=2.\frac{-5}{13}.\frac{-12}{13}=\frac{120}{169}$

$\cos 2a=\cos ^2a-\sin ^2a=2\cos ^2a-1=2.\frac{144}{169}-1=\frac{119}{169}$

$\cos a=\cos ^2\frac{a}{2}-\sin ^2\frac{a}{2}$

$=1-2\sin ^2\frac{a}{2}$

$\Leftrightarrow \frac{-12}{13}=1-2\sin ^2\frac{a}{2}$

$\Rightarrow \sin ^2\frac{a}{2}=\frac{25}{26}$

Vì $\pi < a< \frac{3\pi}{2}$ nên $\sin \frac{a}{2}>0$

$\Rightarrow \sin \frac{a}{2}=\frac{5}{\sqrt{26}}$

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 18:15

a.

\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)

\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)

b.

\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 18:18

c.

\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)

\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)

\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)

\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)

truonghoangphong
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết
vvvvvvvv
Xem chi tiết
Hồng Phúc
19 tháng 4 2021 lúc 18:02

Sao có \(cosb\) ở đây??

1512 reborn
Xem chi tiết
Mysterious Person
5 tháng 5 2018 lúc 20:46

phần chứng minh biểu thức không phụ thuộc \(x\)

ta có : \(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{cos^2a}{cot^2a}\)

\(=\dfrac{cot^2a-cos^2a+cos^2a}{cot^2a}=\dfrac{cot^2a}{cot^2a}=1\left(đpcm\right)\)

ý còn lại : xem lại đề nha bn

phần chứng minh đẳng thức

ta có : \(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=\dfrac{2sinacosa-2sina}{2sinacosa+2sina}+tan^2\dfrac{a}{2}\)

\(=\dfrac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}+tan^2\dfrac{a}{2}=\dfrac{cosa-1}{cosa+1}+tan^2\dfrac{a}{2}\)

\(=\dfrac{1-2sin^2\dfrac{a}{2}-1}{2cos^2\dfrac{a}{2}-1+1}+tan^2\dfrac{a}{2}=\dfrac{-2sin^2\dfrac{a}{2}}{2cos^2\dfrac{a}{2}}+tan^2\dfrac{a}{2}\)

\(=-tan^2\dfrac{a}{2}+tan^2\dfrac{a}{2}=0\left(đpcm\right)\)

ta có : \(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}\)

\(=\dfrac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\dfrac{2cosa+2}{sina\left(cosa+1\right)}\)

\(=\dfrac{2\left(cosa+1\right)}{sina\left(cosa+1\right)}=\dfrac{2}{sina}\left(đpcm\right)\)

còn 2 câu kia để chừng nào rảnh mk giải cho nha

Mysterious Person
11 tháng 5 2018 lúc 17:51

mk lm 2 câu còn lại nha

ta có : \(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=\dfrac{\left(1-cos^2x\right)\left(tan^2x-1\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=\dfrac{tan^2x-sin^2x-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\dfrac{sin^4x}{cos^2x}-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2-1\right)}\)

\(=\dfrac{tan^2x\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\left(tan^2x-1\right)\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)

\(=sinx+cosx\left(đpcm\right)\)

ta có : \(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-\dfrac{sin^2a.cos^2b}{cos^2a.sin^2b}}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{\dfrac{cos^2a.sin^2b-sin^2a.cos^2b}{cos^2a.sin^2b}}=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(sin^2a.cos^2b-cos^2a.sin^2b\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(\left(sina.cosb-cosa.sinb\right)\left(sina.cosb+cosa.sinb\right)\right)}\)

\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-sin\left(a-b\right)sin\left(a+b\right)}=-cos^2a.sin^2b\left(đpcm\right)\)

mk lm hơi tắc ! do tối rồi , mà mk lại đang ở quán nek nên không tiện làm dài . bạn thông cảm

Trần Thị Ngọc Duyên
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2020 lúc 19:58

\(\pi< a< \frac{3\pi}{2}\Rightarrow sina< 0\)

\(\Rightarrow sina=-\sqrt{1-cos^2a}=-\frac{12}{13}\)

\(sin2a=2sina.cosa=\frac{120}{169}\)

\(cos2a=2cos^2a-1=-\frac{119}{169}\)

\(tan2a=\frac{sin2a}{cos2a}=-\frac{120}{119}\)

Trần Thị Ngọc Duyên
Xem chi tiết